Directory entires that have specified Norway as the primary or lead country for the project/activity and are included in the AMAP, ENVINET, SAON and SEARCH directories. To see the full list of countries, see the countries list. The specified country may not be the geographic region where the activity is taking place - to select a geographic region, see the list of regions.
It is also possible to browse and query the full list of projects.
To edit or add records to any of the catalogs, log in or create an account.
The Norwegian Radiation Protection Authority is responsible for a nationwide network of 33 stations that continuously measure background radiation levels. The network was established in the years following the Chernobyl accident in 1986, and was upgraded to a new and modern network in the period 2006-2008. Additional stations were added in 2009. The purpose of the monitoring network is to provide an early warning if radioactive emissions reach Norway.
Monitor the levels of radionuclides (137Cs and 210Po) in selected fish and seafood species in the Norwegian and Barents Sea.
The aim of the CEEPRA (Collaboration Network on EuroArctic Environmental Radiation Protection and Research) project is establishment of a cooperation network in the EuroArctic region, cross-border exchange of knowledge and skills, improvement of emergency preparedness capabilities and risk assessments in case of nuclear accidents in the region as well as raising awareness and knowledge in the general public and stakeholders with respect to the nature, common challenges and associated risks in the area of nuclear safety, emergency preparedness and radioactivity in the environment. The project will study the current state of radioactive contamination in terrestrial and marine ecosystems in the EuroArctic region by examining environmental samples collected from the Finnish Lapland, Finnmark and Troms in Norway, the Kola Peninsula and the Barents Sea. The results will provide updated information on the present levels, occurrence and fate of radioactive substances in the Arctic environments and food chains. Special attention will be given to collection and analyses of natural products widely used by population in Finland, Russia and Norway, such as berries, mushrooms, fish and reindeer meat. The region-specific risk assessments will be carried out through modelling and investigation of long-term effects of potential nuclear accidents in the EuroArctic region and possible impacts on the region’s indigenous population, terrestrial and marine environments, reindeer husbandry, the natural product sector, tourism and industries. Open seminars for general public and target groups will be arranged in Finland, Russia and Norway during the project implementation period to provide relevant information on radioactivity-related issues and the status in the region.
The Norwegian Radiation Protection Authority is responsible for a network of 5 air filter stations. These collect air samples through high density filters which are analyzed weekly by gamma spectroscopy. The network was established in the early 80s and is continuously updated. The purpose of the network is to assess the levels and composition of emissions from incidents and accidents. In addition, with the help of meteorological data, possible sources of release may be identified.
Anthropogenic 129I discharged from European reprocessing plants has widely dispersed in the Nordic waters including the Arctic. Due to the high solubility and long residence time of iodine in seawater, anthropogenic 129I has become an ideal oceanographic tracer for investigating transport pathways and the exchange of water masses.
Elevated levels of 137Cs caused by previous atmospheric nuclear weapons tests fallout and the Chernobyl accident have been observed in Finnmark, Northern Norway. Due to the large consumption of potentially contaminated reindeer meat, whole body measurements of 137Cs levels in reindeer herders have been performed since 1965.
Radioactivity in the Arctic environment is a central topic within environmental pollution issues. Increased discharges of technetium-99 (99Tc) from the nuclear fuel reprocessing plant Sellafield to the Irish Sea has caused public concerns in Norway. This project (acronym “RADNOR”) includes model and monitoring assessments and improvements, assessment of current and novel abiotic and biotic dose parameters and dose calculations and use of realistic climatic background scenarios in order to assess corresponding consequences for transport of radioactive pollutants. RADNOR consists of three main components: part 1, the determination of levels and time series of 99Tc in benthic and pelagic food webs; part 2, containing working packages on improvements to the understanding of site-specific and time-dependent sediment-water interactions (KD), kinetics of accumulation (CF) and body distribution in marine organisms, including contaminated products for the alginate industry and part 3, dealing with model hindcasts and observations for spreading of 99Tc from the Sellafield nuclear reprocessing plant during the 1990s and improvement of the NRPA dose assessment box model. From the model outputs, doses to man and environment will be calculated resulting in a valuable database for use within environmental management and for decision makers.
The determination of radionuclide levels, their temporal and spatial variations and investigations concerning Arctic-specfic processes providing insight into radionuclide behaviour in the extreme environments and long-range transport of contaminants to Svalbard.
Population monitoring of Gyrfalcon, Golden Eagle, Willow Grouse and Passerine birds
Monitoring the levels of radioactivity in water, sediments and biota
1) To perform simulation scenarios for the 21st century, including global warming scenarios, of potential radioactive spreading from sources in the Russian Arctic coastal zone and its impact on Barents, Greenland and Norwegian Seas and the Arctic Ocean; 2) To update the environmental and pollution data base of the Arctic Monitoring and Assessment Program (AMAP); 3) To assess, select and define the most probable simulation scenarios for accidental releases of radionuclides; 4) To implement a Generic Model System (GMS) consisting of several nested models designed to simulate radionuclides transport through rivers, in the Kara sea and in the Arctic ocean / North Atlantic; 5) To carry out simulation studies for the selected "release" scenarios of radionuclides, using various atmospheric forcing scenarios; 6) Assess the impact on potential radioactive spreading from sources as input to risk management.
To assess potential levels of radionuclides input into the Kara sea from existing and potential sources of technogenic radioactivity, located on the land in the Ob- and Yenisey rivers watersheds. Specific Objectives * To reveal and estimate a) most hazardous technogenic sources of radioactive contamination in the Ob- and Yenisey watersheds and b) the most possible and dangerous natural and technogenic (antrophogenic) situations (in the regions of these sources) that may result in release of radionuclides into the environment and may lead to significant changes in the radioactive contamination of the Kara sea * To estimate parameters of radionuclides (potential amount, composition, types etc.) under release to the environment from chosen sources as a result of accidents as well as during migration from the sources to the Kara sea through river systems * To set up a dedicated Database and a Geographic Information System (GIS) for modelling transport of radionuclides from the land-based sources to the Kara sea * To develop and create a dedicated model tool for simulation of radionuclides transport from land-based sources through Ob- and Yenisey river systems to the Kara sea
To investigate the impacts of Russia's military and civilian nuclear activities in the Kola Bay and adjacent areas of the northwest Arctic coast of Russia.
(1) Collate information relating to the environmental transfer and fate of selected radionuclides through aquatic and terrestrial ecosystems in the Arctic. (2) Identify reference Arctic biota that can be used to evaluate potential dose rates to biota in different terrestrial, freshwater and marine environments (3) Model the uptake of a suite of radionuclides, both natural and anthropogenic to reference Arctic biota (4) Develop a reference set of dose models for reference Arctic biota (5) Compile data on dose-effects relationships and assessments of potential radiological consequences for reference Arctic biota (6) Integrate assessments of environmental impact from radionuclides with those for other contaminants.
The project aims to carry out an environmental assessment of the marine environment close to the three main settlements in the Isfjorden complex; Barentsburg, Longyearbyen and Pyramiden. The study comprises analyses of sediment geochemistry and soft-bottom benthic fauna. Attention is given to distinguishing atmospheric transport of contaminants from those arising from local sources.