The full list of projects contains the entire database hosted on this portal, across the available directories. The projects and activities (across all directories/catalogs) are also available by country of origin, by geographical region, or by directory.
National Environmental Monitoring in Sweden in "Air" programme and sub-programme "the thickness of the ozon layer". The project follows changes in the thickness of the ozone layer in the atmosphere over Sweden.
The main objective is to quantify the levels of air pollution in the artctic, and to document any changes in the exposures. It includes the necessary components to address impacts on ecosystems, human health, materials and climate change.
The UV-monitoring network has provided 15 years of high quality, continuous measurements of solar UV radiation. The network is the hub of all activities related to UV forecasting and information to the public, aiming to reduce the high number of cases of acute and chronic negative health effects from excessive UV exposure.
The objective of our work with arctic terrestrial plants and with algae is to study the range of climate adaptation as is expressed in special ultrastructure of cells and tissues, in photosynthetic metabolism, in antioxidative and sun screen compounds under a cold and reduced PAR / UV-B environment (climate different to alpine conditions). This is a comparison of ecophysiological processes already worked out mainly from high alpine plants, which live periodically under stronger cold and under different light regimes, especially higher UV-B and PAR irradiation. We want to find out, whether adaptations found in some alpine organisms occur similarly in polar forms.
The main objective is to study the importance of aerosol particles on climate change and on human health. Particularly, the focus will be on the effect of biogenic aerosols on global aerosol load. During the recent years it has become obvious that homogeneous nucleation events of fresh aerosol particles take frequently place in the atmosphere, and that homogeneous nucleation and subsequent growth have significant role in determining atmospheric aerosol load. In order to be able to understand this we need to perform studies on formation and growth of biogenic aerosols including a) formation of their precursors by biological activities, b) related micrometeorology, c) atmospheric chemistry, and d) atmospheric phase transitions. Our approach covers both experimental (laboratory and field experiments) and theoretical (basic theories, simulations, model development) approaches.
This project investigates how solar UV radiation affects planktonic food webs in the Arctic by changing the nutritional quality of the lower trophic levels. UV radiation has been documented to lead to oxidation of poly-unsaturated fatty acids (PUFAs) in phytoplankton. These PUFAs cannot be synthesized de novo by zooplankton, but are key molecules for the marine pelagic food web. A combined approach was chosen with both sampling of field data (physical as well as biological) and experiments which were carried out during two field seasons in Ny Ålesund in 2003 (april/may) and 2004 (may/june). In 2004, the main part of the field work consisted of an outdoor experiment where phytoplankton was exposed to different irradiation regimes, using the natural sunlight. Algae from all different treatments were used for feeding zooplankton in order to trace the transfer of irradiation-induced changes of the fatty acid composition in phytoplankton to the next trophic level. A number of additional parameters will be analysed as well, combined with the results of an extensive measurement series of both PAR- and UV light. The experiment was carried out on the old pier (Gamle Kaia), while the laboratory part took place in the Italian station ‘Dirigibile Italia’.
The goal of this project is to find the relationships between the UV solar spectral irradiances sampled at ground level in different cloudy situations. This information will be useful for a double target: to a better tuning of the UV Green model outputs and to evaluate the effects of the solar UV radiation on biological target. A second target is to have information about the cloud effect on computing the Umkehr model output (vertical Ozone profiles). This goal will be carried out installing in Ny-Ålesund a spectrophotometer Brewer to sample the UV irradiance synchronous with an automatic photo-camera taking pictures of sky. An analytical study of the two kinds of data allows finding the relationships searched.
Specific objectives of the proposal are: 1. the determination of the cloud coverage by means of a simple methodology based on radiometric measurements; 2. the determination of the radiative forcing produced by different type of cloud and coverage for applications into GCM’s as ‘cloud parameterisations’. The results will be obtained for two different radiative regimes by means of different experimental campaigns.
Effects of UV-B radiation on microbial communities in Kongsfjorden in relation to metal and dissolved organic matter availabillity.
The aim of this project is to investigate natural products from polar macroalgae. As arctic waters represent an extreme habitat, formation of secondary metabolites is limited - besides other factors - by light conditions. Therefore, the influence of light, particularly different photon fluence rates and UV radiation, on secondary metabolism and on regulation of associated genes will be studied.
Study of the energy exchange between atmosphere, sea ice and ocean during freezing and melting conditions; within that, measurements of solar radiation (visible and UV) and optical properties, snow and sea ice characteristics, vertical heat and salt fluxes, oceanographic parameters.
As a result of the increasing atmospheric CO2 levels and other greenhose gases due to anthropogenic activities, global and water temperature is rising. The objectives of our project might be summarized as follows: I. To measure the activity of the enzymatic systems involved in carbon, nitrogen and phosphorus uptake (carbonic anhydrase, nitrate reductase and alkaline phosphatase) in selected macroalgae. To assess the optimal concentration of inorganic nitrogen and phosphorus for growth and photosynthesis. To study the total concentration of carbon and nitrogen metabolites in the macroalgae (proteins, total carbohydrates, and lipids) in order to define the possible existence of nutrient limitation. II. To simulate the conditions of climate change, represented as CO2 enrichment and increasing UV radiation, on the activity of carbon, nitrogen and phosphorus uptake mechanisms. III. To screen the activity of the enzymatic systems previously detailed in macroalgae from the Konjsfjord, in order to know their nutritional state.
Observation how UV-radiation affects recruitment on hard substrate in the upper sublitoral zone.
The objective of the planned work with arctic higher plants is to study the range of adaptation of photosynthetic metabolism, of antioxidative and sun screen compounds in a cold and reduced UV-B climate in comparison of data already raised from high alpine plants, which live partially under stronger cold and under different light regimes, especially higher UV-B. Further, the ultrastructure of leaf cells will be studied to clear, whether adaptations found in some high alpine plants occur similarly in arctic plants, and to connect such cytological results with metabolic functions. An additional comparison will be made with snow algae from Svalbard compared to those harvested on high alpine snow fields. It is the advantage of the planned work, that a number of investigations ranging from ultrastructural studies over different aspects of photosynthesis to assays of UV-B sensitive compounds and antioxidants will be conducted mostly with measurements and sample collection in the field during the same experimental day at one place. Therefore we expect a good connection of the data raised, back to the plant system and expect a much broader description of vitality and adaptation under the current conditions.
Photoinhibition of photosynthesis by UV radiation, the formation of UV-screening pigments, DNA damage by UV radiation as well as DNA repair mechanisms will be determined in marine macroalgae of the Kongsfjord. Moreover, algae from different water depths will be transplanted by divers into areas with opposite light climate or covered by UV-screening filters and their physiological reactions tested. Additionally, the susceptability of the unicellular algal spores to UV-radiation will be tested. The results will allow insights into the effect of UV and photosynthetically active radiation on the zonation of macrocalgae and on the structure of phytobenthic communities. The data will be used to model the effects of increased of UV-radiation due to stratospheric ozone depletion on the Kongsfjord phytobenthic communities.
The changes in the stratospheric ozone layer due to anthropogen emissions lead to an increasing insolation of sunlight in the UV-B range (280nm - 320nm) on ground. One of the major objects of UV-B measurements is to detect long-term trends. The most interesting areas corresponding to ozone depletion are Antarctica and more recently the region around the northern pole. In interdisciplinary cooperation the data are also basis for research in the effects of increasing UV-B doses on plankton, algae, and other organisms. Since 1998 additional measurements of UV-A radiation (320-400nm) are done.
The Baseline Surface Radiation Network (BSRN) is a cooperative network of surface radiation budget. Measurement stations operated by various national agencies and universities under the guiding principle set out by the World Climate Research Programme (WCRP). Presently about 15 stations have been established, one of them is Ny-Ålesund. The concept for a Baseline Surface Radiation Network has developed from the needs of both the climate change and satellite validation communities. The aims of the programme are the monitoring of long-term trends in radiation fluxes at the surface and the providing validation data for satellite determinations of the surface radiation budget. The BSRN station Ny-Aalesund was installed in summer 1992 and is regularly operating since August 1992.
This study will be designed to determine the response mechanisms of representative species of macrophytes along the tide flat to provide the physiological basis for answers for ecological questions, in particular how the community structure of various beds of macroalgae from the intertidal to the subtidal (eulittoral to sublittoral) region of the coastal ecosystem is affected by enhanced UV radiation. In situ measurement of photosynthetic efficiency, growth, community structure and succession will be conducted to investigate how do different species of macrophytes respond to changes in the light environment over a depth gradient and across seasons of the year. It is hypothesized that the differences in the ability to tolerate stress are the main factors controlling the distribution pattern of macrophytes. With the limited understanding in the control of tolerance, elucidating the mechanism of stress in the physiology and ecology of the organisms will allow us to quantify the impediments encountered by organisms inhabiting the tide flats. Objectives: 1. To measure the daily and seasonal variation in photosynthetically active and ultraviolet radiation. 2. To characterize the macrophyte community structure of the coastal habitat. 3. To perform UV exclusion and UV supplementation experiments in order to assess its effect on the growth of some macrophyte species in the field and in mesocosms. 4. To assess the prevention of UV damage in selected macroalgae by production of sunscreen pigments. 4. To determine the recruitment rate, recolonization pattern and succession under PAR and varying UVR condition.
SAGE III was successfully launched on 10. Dec. 2001 on a Russian M3 rocket. It provides accurate data of aerosols, water vapour, ozone, and other key parameters of the earth's atmosphere. The science team of the SAGE III experiment at NASA has nominated the Koldewey-Station as an anchor site to contribute within the Data Validation Plan as part of the Operational Surface Networks. Data directly relevant to the SAGE III validation are aerosol measurements by photometers and lidar, as well as temperature measurements and ozone profiling by balloon borne sondes, lidar and microwave radiometer. Data will be provided quasi online for immediate validation tasks.
In preparation to the launch of the SAGE III experiment in March 2001, NASA and the European Union performed the SOLVE/THESEO-2000 campaign, which had three components: (i) an aircraft campaign using the NASA DC-8 and ER-2 airplanes out of Kiruna/Sweden, (ii) launches of large stratospheric research balloons from Kiruna, (iii) validation exercises for the commissioning phase of SAGE III. The German Arctic research station Koldewey in Ny-Ålesund/Spitsbergen contributed to (i), (ii), and (iii) by performing measurements of stratospheric components like ozone, trace gases, aerosols (PSCs), temperature and winds. The main observation periods were from December 1999 to March 2000.