The full list of projects contains the entire database hosted on this portal, across the available directories. The projects and activities (across all directories/catalogs) are also available by country of origin, by geographical region, or by directory.

Displaying: 121 - 140 of 228 Next
121. Study of the ice phase in Arctic mixed-phase clouds and its influence on the cloud-radiation interaction (EPOPEE) within the international atmospheric research project ASTAR (Arctic Study of Tropospheric Aerosol and Radiation)

The project EPOPEE is embedded in the international project ASTAR to study direct and indirect climate effects of aerosols and clouds in the Arctic. The particular goals of the project EPOPEE are to experimentally characterize the ice phase in Arctic clouds (including the ice phase) in situ, to study the aerosol-cloud as well as cloud-radiation interactions, and to develop adequate methods to validate remote sensing cloud parameters. In 2004 the project EPOPEE is mainly organized around in situ observations of detailed microphysical and optical cloud properties onboard the Polar-2 aircraft during the transition from polluted Arctic haze (observed especially in late winter, early spring months) to clean summer aerosol conditions. The transition from Arctic haze to clean summer conditions is quite sharp (a large amount of aerosols coming from Eurasian industrial areas accumulate over the Arctic and cover the Arctic by a layer of a smog-like haze of the size of the continent of Africa) due to a radical change in atmospheric transport patterns and is, thus, easy to identify. During Arctic summer, the high latitudes are then more or less “protected” from long-range transport of air masses from lower latitudes. The principal scientific objective of the project EPOPEE in 2004 will focus on studying the aerosol-cloud interactions with particular attention given to the ice phase nucleation in Arctic mixed-phase clouds. The interpretation of the instrumental observations will broadly benefit from a very close cooperation with the LaMP modelling group for theoretically coupling small-scale processes (cloud particle nucleation) with meso-scale dynamics. Furthermore, the project will focus on cloud-radiation interaction and the development of adequate methods to validate cloud parameters retrieved from remote sensing techniques. Therein, we will experimentally answer the question of how the different ice crystal shapes govern the scattering phase function of respective crystals. Moreover, the in situ cloud measurements will allow to develop an adequate strategy for the interpretation of remote sensing data from a depolarisation Lidar onboard the same aircraft (Polar-2).

Atmospheric processes Arctic haze Long-range transport Climate Contaminant transport Climate change Modelling Arctic Atmosphere Ecosystems

The 2004-2007 scientific research program CHIMERPOL II consists in improving the results obtained during the CHIMERPOL I programme around three main ideas: 1-Understand physico-chemical processes of oxidation of elemental gaseous mercury in the atmosphere during Mercury Depletion Events (MDE) in Corbel, Svalbard from 2004 to 2007 with a continuous monitoring station for gaseous mercury and its speciation, 2-Evaluate deposition and emission fluxes of mercury above the Arctic snow pack by a continuous monitoring of these fluxes in Corbel, Svalbard and in Station Nord, Greenland, from 2005 to 2007. 3-Determine the Air-Snow-Firn-Ice transfer function for mercury and its speciation with a complete balance of mercury in the different compartments in Summit, Greenland from 2006 to 2007.

Ozone Heavy metals Contaminant transport Radionuclides Ice cores Atmosphere

This technological program aims to collect permanent informations on local meteorology and aerosols particles at Corbel Station, Svalbard, 6km east of Ny alesund. 78 54 N, 12 07 E Programme 2004 – 2005 April 2004 : Prticmle counter installation and collect datas from meteo Station. Soar cels will be also instlled at the station to power these systems.

Atmospheric processes Climate variability Long-range transport Climate Pollution sources Contaminant transport Climate change Arctic Local pollution Atmosphere
124. Long distance pollen transport in the Arctic: 1. Greenland

The submitted proposal aims to perform the monitoring of the pollen rain in the Greenland atmosphere by distinguishing the local pollen production, relatively low, from pollen grains originating from other Arctic areas. A regular monitoring of the atmospheric pollen content must be performed in order to evaluate the amount emitted and characterise the seasonality of the emission. A comparison with air mass trajectories must allow the modelling of long distance transport

Biology Climate variability Spatial trends Modelling Biodiversity Data management pollen Atmosphere Ecosystems

This technological program aims to collect permanent informations on local meteorology and aerosols particles at Corbel Station, Svalbard, 6km east of Ny alesund. 78 54 N, 12 07 E Programme 2004 – 2005 April 2004 : Prticmle counter installation and collect datas from meteo Station. Soar cels will be also instlled at the station to power these systems.

Atmospheric processes Climate variability Long-range transport Climate Pollution sources Contaminant transport Climate change Arctic Local pollution Atmosphere
126. NOx and SO2 samplings - Corbel station

This technological program aims to get a better view of the Corbel site quality (78 54 N, 12 07 E, Svalbard close to Ny Alesunsd) for atmospheric chemistry. Nox and SO2 samplers are deployed on 16 places on a 4 km2 area around the Station (79°N, Svalbard), protected from snowscooters activity. The influence of Ny Alesund village is also studied. Programme 2004 April 2004 : poles installation and samplers deployment on the 16 stations; analysis will be made by CNR.

Atmospheric processes Long-range transport Climate Pollution sources Contaminant transport Climate change Emissions Arctic Local pollution Atmosphere
127. Die GPS/GLONASS Permanentstation Sonnblick -ein moderner meteorologischer Sensor

GPS has become an important tool both in navigation and in precise point positioning. One of the nuicance parameters limiting the accuracy of point determination is the water vapor content of the troposphere. On the other hand meteorologists are interested in the wet component of the troposphere as a valuable tool for Numerical Weather Prediction. Therefore GPS offers a low cost monitoring of water vapor with high temporal resolution. We make use of continuous measurements of the GPS/GLONASS reference station network in Austria, which currently consists of about 30 sites with distances ranging from 50 km to 120 km. We calculate the zenith wet delays for a period of 2 months (February and March 2002). Subsequently the results are compared to contributions of different processing centers of the COST-716 project ?Exploitation of Ground Based GPS for Climate and NWP? and with zenith path delay estimates provided by the IGS. As meteorologists need the water vapor within less than two hours, special attention is paid to the availability, reliability and especially to the quality of the satellite orbits used for the network calculations.

GPS Climate Water Vapour GNSS Atmosphere
128. Bacterial growth in cloud droplets

It is well known that the atmosphere is a conveyor of microorganisms, and that bacteria can act as ice or cloud condensation nuclei, but clouds have not been considered as a site where organisms can live and reproduce. We could show that bacteria in cloud droplets collected at high altitudes are actively growing and reproducing at temperatures at or below 0°C. Since ~60% of the earth surface is covered by clouds, cloud water should be considered as a microbial habitat.

bacterial activity Biology cloud droplets Atmosphere Ecosystems supercooled water
129. Tritium as a 'natural' tracer of air masses

It is well known that tritium, the hydrogen isotope 3H, is part of nuclear weapons and was spread all over the world as a consequence of nuclear bomb explosions. Rarely it is regarded as being “natural”, but actually it is. Long time before humans appeared tritium already existed on earth for a long time. This “natural” tritium is the product of cosmic radiation interactions with the atmosphere (mainly N-14). Nowadays this kind of tritium production contributes only to a small extent to the atmospheric tritium. Tritium is radioactive and decays with a half-life of 4.500 days under the emission of a very low energetic beta-particle. In the atmosphere tritium can be found within water vapour (HTO), hydrogen (HT) or methane (CH3T). Yet, the main portion of tritium released during the 1960’s has already been eliminated from the atmosphere by radioactive decay and precipitation. A large amount is captured in the oceans. Indeed, today anthropogenic sources releasing tritium to the environment can still be found. At the end of the 1980‘s contacts with research institutes in former Eastern Bloc countries lead to the idea of establishing a tritium sampling network. The primary goal was the documentation of atmospheric tritium. Statements about potential releases and their sources and the radiation hazards associated should be obtained. Furthermore it might help with the verification of meteorological models. To acquire comparable results a standardised sampling device was developed. This system simultaneously collects samples of air humidity and hydrogen. It was planned to enlist the gathered data in a database and to use them for the following subjects: • observation of local and global tritium transport in the atmosphere • detecting tritium releases and locating their sources • radiation risk evaluation • examining the transmutation of elemental hydrogen into water under natural conditions With the breakdown of the Eastern Bloc the idea of this common network faded away. At the moment only at two stations in Austria air humidity and air hydrogen are collected as planned: since 1991 at Research Center Arsenal in Vienna and since 1999 at Hoher Sonnblick a high mountain station (3160 m). Currently we are working together with the IAEA on a project with the aim to find a model, which helps evaluating weather conditions and in particular the climatic processes. As for these investigations the stable isotopes H-2 and O-18 are used and the currently used device introduces fractionation a new method is developed right now. Since the specific tritium activity concentration is not affected by air pressure or humidity the values for the two locations can be compared directly. In general the measured values are similar but sometimes differ noticeably. For example a peak value for the tritium activity concentration observed during March 2000 at Sonnblick was not noticed in Vienna. In this context the attempt should be made to analyse the air flows with the help of trajectories. The tritium activity concentration of air humidity is primarily determined by the amount of humidity itself. Therefore the concentration is directly linked to the seasons. Only significant changes in the specific tritium activity concentration can be detected by the use of the tritium activity concentration. Seasonal variations within the tritium activity concentration of hydrogen could not be observed. The values vary around 10 mBq/m3.

Atmospheric processes Radioactivity Long-range transport Climate Contaminant transport Radionuclides Modelling Atmosphere
130. Determination of atmospheric fluxes of Radionuclides, Heavy Metals and Persistent Organic pollutants in well defined watershed, lakes and coastal marine sediments of Svalbard from the beginning of nuclear age

The 2003 field activity will be mainly dedicated to coring activity which includes: 1. the sampling of snow and ice cores from a Ny-Ålesund nearby glacier (midre Lovenbreen). 2. the collection of near coast (Kongsfjorden) and lakes sediments (maximum under pack depth 30 m). Sampling collection of ice and sediment cores will be performed using a portable, electric operated, sampling corer. The transport of all materials up to each sampling station should be performed with snowcats.

Atmospheric processes Biology Hydrography Heavy metals Radioactivity Radionuclides Arctic Persistent organic pollutants (POPs) Sediments Atmosphere Ecosystems
131. Measurement and Modeling the Mercury Depletion Events in the Arctic at the Ny-Ålesund Site

One of the major benefits of performing measurements at Ny-Ålesund is the availability of a monitoring station on Mount Zeppelin, 474m asl. Given the typical height of the Arctic inversion layer during the envisaged measurement period, it will be possible to continuously monitor mercury and particulate in the free troposphere at the same time as performing ground level monitoring. The simultaneous measurements above and below the boundary layer should provide evidence for the mode of elemental Hg replenishment, whether it is from due to exchange with the free troposphere, or transport occurring at sea level. The proposed collaboration, by collecting data from two strategically placed Arctic stations, in the paths of different air masses and data from above the Arctic inversion layer would provide the most comprehensive set of Arctic mercury measurements performed to date.

Pathways Atmospheric processes Mercury depletion Emissions Geochemistry Data management Atmosphere Ecosystems
132. Chlorofluorocarbons, Hydrogenated Halocarbons and Degradation Products of the Hydrogenated Halocarbons in the Arctic Environment

Work program: Grab air samples will be collected in sampling sites not influenced by local emission sources for the determination of chlorofluorocarbons and of hydrogenated halocarbons. A 15 days sampling campaign is scheduled. Samples will be analysed in our Institution by using the analytical methodology here described and results obtained will be evaluated and compared with data obtained, by using the same analytical methodology, analysing air samples collected in other remote and semi remote sites. For the analysis of the hydrogenated halocarbon degradation products snow and water samples will be collected as well, according to the different season of the year. The collected samples will be then derivatized and analysed in our Institution for the evaluation of the presence of such compounds in remote areas.

Atmospheric processes Ozone Climate Climate change Emissions Atmosphere
133. WADOS (wet and dry only precipitation sampler)

The objectives of the project are the investigation of the ion concentration in the precipitation water as well as the determination of the ion entries belonged by the precipitation water. The temporal variability was described on the one hand on the basis the appropriate yearly variations (saisonality), on the other hand over the long-term behaviour (trend) with heavyweight on the main components (S- and N- connections). Additionally on basis of the data of the further Lands of the Federal Republic the spatial variability for the Austrian federal territory is represented.

Precipitation analytics Heavy metals Climate Forest damage Atmosphere Rain analytics
134. Cloud Effects on UV Irradiance Measurements (CEUVIM)

The goal of this project is to find the relationships between the UV solar spectral irradiances sampled at ground level in different cloudy situations. This information will be useful for a double target: to a better tuning of the UV Green model outputs and to evaluate the effects of the solar UV radiation on biological target. A second target is to have information about the cloud effect on computing the Umkehr model output (vertical Ozone profiles). This goal will be carried out installing in Ny-Ålesund a spectrophotometer Brewer to sample the UV irradiance synchronous with an automatic photo-camera taking pictures of sky. An analytical study of the two kinds of data allows finding the relationships searched.

Atmospheric processes Ozone UV solar radiation UV radiation Climate change Atmosphere Clouds effects
135. Determination of cloud coverage and radiative forcing from surface measurements

Specific objectives of the proposal are: 1. the determination of the cloud coverage by means of a simple methodology based on radiometric measurements; 2. the determination of the radiative forcing produced by different type of cloud and coverage for applications into GCM’s as ‘cloud parameterisations’. The results will be obtained for two different radiative regimes by means of different experimental campaigns.

effects on surfaces energy fluxes measurement of the radiative surface partition Radioactivity cloud coverage Exposure solar radiation radiative forcing Atmosphere
136. Studies of the Polar Cap Ionosphere

The experiments comprise automated receiving systems for 150 and 400 MHz transmissions from NIMS (formerly known as NNSS) satellites that are used to determine the ionospheric electron content by means of the differential carrier phase method. Receivers are located at Ny-Ålesund, Longyearbyen, Bjørnøya and Tromsø. Measurements of electron content from the receiver network are inverted in a tomographic reconstruction algorithm to yield two-dimensional images of electron density over a wide region. The observations are used to investigate the dynamical processes responsible for the spatial structuring of the plasma distribution in the polar ionosphere. These tomographic images are complementary to measurements made using the EISCAT and EISCAT Svalbard radars and auroral optical instruments located on Svalbard.

Atmospheric processes Geophysics Ionosphere tomography Atmosphere
137. Relative importance of different sources of particulate matter in the Kongsfjorden environment

The general objective of this research concerns the quantitative and qualitative study of particulate matter retained in natural (sea-ice and sediment) and artificial (sediment traps) traps in order to determine the main origin (autochtonous and allochtonous) and the relative importance of different fractions of particulate matter and to follow their fate in the environment. To quantify the autochtonous origin of particulate matter, primary production, nutrient uptake, biomass distribution, phytoplankton community structure and fluxes in the first levels of the trophic chain will be investigated. Studies will be conducted in the sea-ice environment and in the water column and compared to the particle fluxes measured both in the water, using sediment traps and in the sediment, by radiometric chronology, in order to estimate the different contribution of these habitats to carbon export to the bottom. The zooplankton will be identified and counted and primary production, nutrient uptake and phytoplankton dynamics will be related to hydrological structure and nutrient availability in the environment. The Kongsfjord results particularly suitable for the main objective of this research as it is influenced by important inputs of both atmospheric (eolic and meteroric) and glacial origin and is characterised by a complex hydrological situation which may promote autochtonous productive processes, thus determining important particulate fluxes.

athmospheric carbon dioxide Biological effects Biology Arctic haze Hydrography inorganic and organic nutrients particulate Sea ice Ice Oceanography Biodiversity Arctic Ice cores Data management Atmosphere Ocean currents phytoplankton sediment radiometric chronology zooplankton
138. ENVISAT AO ID 130: Global study of inorganic chlorine and fluorine loading in the Earth’s atmosphere, based on correlative measurements by ENVISAT-1 and at 10 NDSC sites

The project aims at producing an ENVISAT-1 mission-long monitoring of the inorganic chlorine (Cly) and fluorine (Fy) loading in the Earth’s middle atmosphere, based on FTIR vertical column abundance measurements of the key related species HCl, ClONO2, HF and COF2 at 10 ground-based NDSC sites distributed worldwide. These Cly and Fy inventories will be completed with ClO and OClO measurements expected as Level-2 products from ENVISAT-1. The column abundances of the source gases CFC-12 and HCFC-22 will be used to place the stratospheric Cly and Fy evolution in perspective with the more complete sets of organic chlorinated and fluorinated compounds measured at the ground by the in situ networks NOAA-CMDL and AGAGE. The assimilation of the retrieved geophysical data bases will be performed through 3-D model calculations incorporating physical, chemical and transport characteristics of the global atmosphere.

Atmospheric processes Sources Ozone Climate variability NDSC Spatial trends Pollution sources Climate change Emissions Atmosphere Temporal trends satellite validation
139. ENVISAT AO - ID:158: CINAMON: Characterisation, INterpretation, Application, and Maturation of key Ozone-related ENVISAT-1 level-2 products, using correlative observations associated with the NDSC

The present project aims at the geophysical validation, from pole to pole and on the long term, of key ozone-related level-2 products (O3, NO2, BrO, OClO, and ClO) from GOMOS, MIPAS and SCIAMACHY onboard ENVISAT-1, and at a contribution to the maturation of the related level-1b-to-2 data processors. Application data processing will be used to convert level-2 data into a more suitable format for validation and scientific end-users. The respective performances of the ENVISAT data products, and their sensitivity to various relevant parameters, will be investigated from the Arctic to the Antarctic, over a variety of geophysical conditions. The impact of these performances on specific atmospheric chemistry studies will be emphasised. The pseudo-global investigations will rely on correlative studies of ENVISAT data with high-quality ground-based, in situ and balloon observations associated with the Network for the Detection of Stratospheric Change (NDSC).

Atmospheric processes Sources Ozone Climate variability NDSC Spatial trends Pollution sources Climate change Emissions Atmosphere Temporal trends satellite validation
140. ENVISAT AO - ID:126: Validation of ENVISAT-1 level-2 products related to lower atmosphere O3 and NOy chemistry by an FTIR

The project will provide a long-term, pseudo-global validation support to the ENVISAT-1 atmospheric measurements, based on mutually consistent high-quality solar and lunar observations from FTIR spectrometers operated at primary and a number of complementary NDSC stations. The validation is limited to a number of target species, most of which are primary NRT or OL level-2 products of the mission, with focus on NOy components: O3, NO2, NO, N2O, HNO3, HNO4, H2CO, CO and CH4. Synergistic use will be made of column and profile data from MIPAS, GOMOS and SCIAMACHY. The ground network will deliver mean vertical column abundances for all target species with NDSC-type quality, and height profile information for some target gases as secondary products to the PI's home institute, where the correlative analyses with the ENVISAT-1 products will be done. Asynoptic mapping tools will support the validation efforts.

Atmospheric processes Sources Ozone FTIR Mapping Climate variability NDSC Spatial trends Pollution sources Climate change Emissions Atmosphere Temporal trends satellite validation