Projects/Activities

The full list of projects contains the entire database hosted on this portal, across the available directories. The projects and activities (across all directories/catalogs) are also available by country of origin, by geographical region, or by directory.

Displaying: 41 - 60 of 345 Next
41. ICP Forest Program in Sweden

At present, Sweden has 4 integrated monitoring (IM) sites that are part of a European network on integrated monitoring with an extensive measurement program. One of these sites, Gammtratten, situated in central Västerbotten, monitors several variables (Table 4, #3.2). SGU conducts groundwater sampling at 3 of the sites. In total, 18 stations are sampled 4 times per year. A program for comprehensive information on the state of forests in Europe was launched 1985 in response to acid deposition and fear of forest decline. The program was named the European ICP-Forest Program (International Co-operative Program on Assessment and Monitoring of Air Pollution Effects on Forests operating under the UNECE Convention on Long-range Transboundary Air Pollution, Table 6, #5). ICP-Forest monitors forest conditions in Europe and operates at two levels of intensity. Level I is a systematic 16 km by 16 km transnational grid having around 6 000 observation plots in Europe. Level II is comprised of around 800 sites in selected forests throughout Europe with more intense observations. The Level I measurements consist of three parts: crown condition assessment, soil condition assessment, and foliar survey. The crown condition assessment includes the degree of defoliation, discoloring, and damage visible on trees. The soil condition assessment addresses possible nutrient imbalances caused by, e.g. acid deposition. The foliar survey assesses foliar nutrient concentrations, because changes in environmental conditions may affect foliar nutrient concentrations. The Swedish contribution is made by the national forest inventory (SLU-FRM), which estimates the degree of crown defoliation and discoloring on 700 permanent plots around the country. The Swedish Forest Agency (SST) organizes the Level II observational plots. They manage a program with more than 200 permanent plots throughout Sweden, on which they estimate forest vitality (several measures), forest growth, soil chemistry, and field vegetation. Of these plots, 100 are connected to the international network, and 20 are north of 60°N. Foliage chemistry is determined on 100 plots, deposition and soil water chemistry on 50 plots, air quality on 25 plots, and climate on 14 plots. The sampling intensity varies from once in 5 years to once per hour depending

Ecosystems Environmental management Pollution sources
42. IRF ozone and other trace gases monitoring + aerosols + thin clouds + wind/structures + atmospheric composition + particle precipitation + ionosphere

The total column amount of ozone and other trace gases are measured with mm-wave instruments, FT-IR and DOAS spectrometers, at IRF in Kiruna (Table 6, #8.1). With the sun or moon as infrared light sources, FT-IR spectrometers can quantify the total column amounts of many important trace gases in the troposphere and stratosphere. At present the following species are retrieved from the Kiruna data: O3 (ozone), ClONO2, HNO3, HCl, CFC-11, CFC-12, CFC- 22, NO2, N2O, NO, HF, C2H2, C2H4, C2H6, CH4, CO, COF2, H2O, HCN, HO2NO2, NH3, N2, and OCS. Together with Russian and Finnish institutes at the same latitude, IRF studies the stratospheric ozone and its dependence on polar atmospheric circulation and precipitation of charged particles. The ground-based instruments are also used to validate satellite measurements of vertical ozone distribution (Odin, SAGE III, and GOME). Aerosols and thin clouds are measured at IRF in Kiruna. For example, researchers use Lidars (Light Detection and Ranging) to measure polar stratospheric and noctilucent clouds. Winds and structures are measured with ESRAD MST radar at IRF in Kiruna. At IRF in Kiruna measurements are used to assess the physical and chemical state of the stratosphere and upper troposphere and the impact of changes on the global climate. Particle precipitation is measured by relative ionospheric opacity meters (riometers) at IRF in Kiruna. Riometers measure the absorption of cosmic noise at 30 and 38 MHz and provide information about particles with energies larger than 10 keV. The electron density of the ionosphere is measured by ionosonds and digisondes at IRF in Kiruna.

Pollution sources Environmental management Atmosphere
43. IVL Throughfall network

Deposition measurements are mainly made in forest injury observation plots laid out by the Swedish Forestry Agency (SST). The observations made are: Air Chemistry: SO2, NO2, NH3, O3 Soil Water Chemistry: pH, Alk, SO4-S, Cl, NO3-N, NH4-N, Ca, Mg, Na, K, Mn, Fe, ooAl, oAl, Al-tot, TOC Deposition open field precipitation: H+, SO4-S, Cl, NO3-N, NH4-N, Ca, Mg, Na, K, Mn Deposition in forest throughfall: H+, SO4-S, Cl, NO3-N, NH4-N, Ca, Mg, Na, K, Mn A notorious problem in deposition assessments is dry deposition on forest canopies. If throughfall is sampled below the canopy it will consist not only of dry and wet deposition, but also of canopy leakage, i.e. exudates and diffusion of substances from within the leaves. However, it has been argued that throughfall sampling, even if not free from problems, may add information to the normal wet deposition sampling. IVL operates a throughfall sampling network comprised of 10 forest sites for sampling, from which monthly samples are analyzed for pH, SO4, NO3, NH4, Kjeldahl-N, Cl, K, Ca, Na, Mg, TOC, conductivity, alkalinity, and amount of throughfall.

Environmental management Pollution sources
44. SMHI Mesoscale Atmospheric Transport and Chemistry Model (MATCH)

Calculating deposition in a grid over Sweden showed the lack of information on deposition at high altitude. SMHI applied the meso scale MATCH model to calculate the deposition field and the matched model is called MATCH-Sweden. The result is found at http://www.smhi.se/cmp/jsp/polopoly.jsp?d=5640&l=sv The observations made at these stations are: Particles in air: SO4-S, NO3-N, NH4-N, Cl, Na, Ca, Mg, K Gase:s NH3-N, HNO3-N, SO2-S Deposition open field precipitation: H+, SO4-S, Cl, NO3-N, NH4-N, Ca, Mg, Na, K Deposition in forest throughfall: H+, SO4-S, Cl, NO3-N, NH4-N, Ca, Mg, Na, K To integrate the relatively few deposition measurement sites, SMHI has adopted the Mesoscale Atmospheric Transport and Chemistry Model (MATCH) that uses emission data, meteorological data, routines for chemical processes, and a transport model to calculate long-range transport and deposition of air pollutants (Table 4, #1.5). Time series of gridded data over Sweden for deposition of different inorganic chemical compounds calculated with the MATCH-Sweden model are available at SMHI (Appendix, Table 11). When the MATCH-Sweden model was first tested, the deposition network lacked high elevation sites. Hence, a monitoring program for deposition at higher elevations (Table 4, #1.9) was started. It consists of 4 sites in high elevation forests along the Swedish mountain ridge, where NO3, NH4, NH3, HNO3, SO2, SO4, Na, K, Ca, Mg, Cl, pH, conductivity, and amount of precipitation are analyzed on monthly accumulated precipitation samples.

Atmosphere Environmental management Pollution sources
45. Abisko Scientific Research Station (ANS) (ANS)

Investigations within many areas of biosciences and geosciences are carried out at the station. The emphasis of staff research is on plant ecology and meteorology. The main objectives of the ecological projects are to study the dynamics of plant populations and to identify the controlling factors at their latitudinal and altitudinal limits. The meteorological projects deal with recent climate changes in the region, and also with local variations of the microclimate in subalpine and alpine ecosystems.

Atmosphere Climate Ecosystems Environmental management
46. SLU, Faculty of Forestry, Unit for Forest Field Research, experimental forests

The Faculty of Forestry at SLU has two research stations with experimental forests, two experimental forests with permanent staff, three without permanent staff and a large number of long-term field trials. These facilities are spread over the country.

Climate Environmental management Atmosphere Ecosystems
47. Arctic Birds Breeding Conditions Survey

The Survey is aimed at improving understanding of regularities in population dynamics of Arctic terrestrial birds (in particular waterfowl) by means of collating at pan-Arctic scale information on environmental conditions on breeding areas

birds Biology Climate variability Spatial trends Terrestrial mammals Arctic Temporal trends
48. Effects of large herbivores on diversity of plants and soil microfauna.

To monitor effects of hebivore grazing in established exclosures in west Greenland on diversity of plants and microarthropods in soil. One site in central west Greenland with caribou and one site in southern Greenland with sheep.

Biological effects Biology Soils Environmental management Climate change Caribou Terrestrial mammals Biodiversity Arctic Reindeer Ecosystems
49. Contaminants in Polar Regions – Dynamic Range of Contaminants in Polar Marine Ecosystems (COPOL)

The IPY-project ‘COPOL’ has a main objective of understanding the dynamic range of man-made contaminants in marine ecosystems of polar regions, in order to better predict how possible future climate change will be reflected in levels and effects at higher trophic levels. This aim will be addressed by 4 integrated work packages covering the scopes of 1) food web contaminant exposure and flux, 2) transfer to higher trophic levels and potential effects, 3) chemical analyses and screening, 4) synthesis and integration. To study the relations between climate and environmental contaminants within a project period of four years, a “location-substitutes-time”-approach will be employed. The sampling is focussed towards specific areas in the Arctic, representing different climatic conditions. Two areas that are influenced differently by different water masses are chosen; the Kongsfjord on the West-coast of Spitzbergen (79N, 12 E) and the Rijpfjord North-East of Svalbard (80N, 22 E). The main effort is concentrated in the Kongsfjord. This fjord has been identified as particularly suitable as a study site of contaminants processes, due to the remoteness of sources, and for influences of climatic changes, due to the documented relation between Atlantic water influx and the climatic index North Atlantic Oscillation (NAO). The water masses of the Rijpfjord have Arctic origin and serves as a strictly Arctic reference. Variable Atlantic water influx will not only influence abiotic contaminant exposure, but also food web structure, food quality and energy pathways, as different water masses carry different phyto- and zooplankton assemblages. This may affect the flux of contaminants through the food web to high trophic level predators such as seabirds and seals, due to altered food quality and energy pathways.

Biological effects Organochlorines Heavy metals Fish Climate variability Long-range transport Climate Contaminant transport Climate change Exposure Arctic Persistent organic pollutants (POPs) Local pollution Seabirds Food webs Ecosystems
50. Haliclona natural products

In contrast to many other marine regions, chemical interactions between organisms in Arctic waters are little understood. This project investigates natural products and chemical interactions in the sponge genus Haliclona in temperate and polar waters. Several new secondary metabolites isolated from Haliclona show feeding deterrence and activity against bacteria and fungi, but the compound composition varies with habitat and year. That raises the question whether sponges of the genus Haliclona as a model are able to adapt to changing environmental factors such as water temperature and colonization by bacteria by varying their secondary metabolite composition.

Biological effects Climate change Biodiversity natural products Ecosystems
51. Investigation of the physiological and cellular adaptation of plants to the arctic environ-ment – comparison with high alpine conditions

The objective of our work with arctic terrestrial plants and with algae is to study the range of climate adaptation as is expressed in special ultrastructure of cells and tissues, in photosynthetic metabolism, in antioxidative and sun screen compounds under a cold and reduced PAR / UV-B environment (climate different to alpine conditions). This is a comparison of ecophysiological processes already worked out mainly from high alpine plants, which live periodically under stronger cold and under different light regimes, especially higher UV-B and PAR irradiation. We want to find out, whether adaptations found in some alpine organisms occur similarly in polar forms.

Ultrastructure Biological effects UV radiation physiology stress adaptation Climate change Arctic Cold stress Ecosystems
52. Biology of Arctic macroalgae

The effects of stratospheric ozone depletion and of global warming on the marine biosphere are still underexplored, especially in the Arctic. Seaweeds are very important primary producers but are strongly susceptible to enhanced UV radiation and elevated temperatures, especially their spores. The UV susceptibility of spores has previously been invoked to determine the depth distribution of seaweeds. Therefore, we will investigate the effect of different radiation and temperature conditions on the ultra-structure, physiology and biochemistry of spores from various brown and green algae growing in different water depths. Moreover, we will study competition between zoospores of various species of brown macroalgae in order to get an insight about biotic factors structuring seaweed communities and also to explain more clearly the present seaweed zonation pattern.

Biological effects UV radiation DNA damage seaweeds Climate change spores phlorotannins UV screening pigments Arctic fine structure
53. Physics, Chemistry and Biology of Atmospheric Composition and Climate Change, Finnish Center of Excellence

The main objective is to study the importance of aerosol particles on climate change and on human health. Particularly, the focus will be on the effect of biogenic aerosols on global aerosol load. During the recent years it has become obvious that homogeneous nucleation events of fresh aerosol particles take frequently place in the atmosphere, and that homogeneous nucleation and subsequent growth have significant role in determining atmospheric aerosol load. In order to be able to understand this we need to perform studies on formation and growth of biogenic aerosols including a) formation of their precursors by biological activities, b) related micrometeorology, c) atmospheric chemistry, and d) atmospheric phase transitions. Our approach covers both experimental (laboratory and field experiments) and theoretical (basic theories, simulations, model development) approaches.

Atmospheric processes UV radiation Climate Atmosphere
54. ACCENT Atmospheric Composition Change, the European Network of Excellence

The overall goals of ACCENT are to promote a common European strategy for research on atmospheric composition change, to develop and maintain durable means of communication and collaboration within the European scientific community, to facilitate this research and to optimise two-way interactions with policy-makers and the general public. ACCENT will establish Europe as an international leader in atmospheric composition change research, able to steer research agendas through its involvement in major international programmes. ACCENT furthermore aims to become the authoritative voice in Europe on issues dealing with atmospheric composition change and sustainability.

Pathways Atmospheric processes Long-range transport (biosphere-atmosphere) interaction Contaminant transport Modelling Data management Atmosphere
55. Ice caves in order to reconstruct Holocene glacier recessions

The objective of the project was the investigation of englacial melt water channels of Svalbard glaciers in order to find in situ organic material within glacier caves. Specified organic material found beneath glaciers was meant for radiocarbon dating and creation of reliable geochronologies of glacier recessions with considerable smaller glacier termini than present on Svalbard. First radiocarbon dating results ever from organic material found under a glacier’s bottom of glacier Longyearbreen will be published this year. The different moss species ranging from Tomentypnum nitens, Sanionia uncinata, Distichium spp., Syntrichia ruralis gave ages between 1900 and 1100 cal yr BP (Humlum et al., 2004).

Glaciers Geology Climate variability Ice caves Radionuclides Ice
56. IOANA

The project IOANA proposes to better understand the intimate coupling between ozone mixing ratios and particulate nitrate isotopic characteristics. Ozone Depletion Events which occur in Arctic coastal locations shortly after sunrise are a subject of interest per se (scientifically challenging for two decades) but also provide a context in which ozone mixing ratios are highly variable, enabling to characterize the dynamic of correlation and process studies with a resolution of a day. This is a first step towards the use of the isotope tool in reconstructions of the oxidative capacity of the atmosphere. This programme is a preparation of the IPY-OASIS project and propose to coodinate a set of collaborations than will be effective duing the International Polar Year.

Atmospheric processes Sources Ozone Arctic haze Long-range transport Pollution sources Climate change stable isotopes Arctic Ice cores nitrogen nitrate Atmosphere
57. A survey of contaminants in peregrine falcon eggs from South Greenland

The primary scope of the project is to investigate the long-term time trend of brominated flame retardants for the contamination and possible effects in relation to the contamination of peregrine falcon eggs. The contamination by the conventional POP compounds will also be identified. Totally 36 out of 53 collected eggs will be analysed. Time trend analysis will be performed based on a multi-variant methodology for a period of 18 years. The result will contribute to the assessment of organic pollutant contaminationm in Greenland including the effect on vulnerable wild life.

Peregrine falcon Biological effects Organochlorines PCBs Persistent organic pollutants (POPs) Pesticides Temporal trends
58. ISACCO(Ionospheric Scintillations Arctic Campaign Coordinated Observations)

The polar ionosphere is sensible to the enhancement of the electromagnetic radiation and energetic particles coming from the Sun expecially around a maximum of solar activity . Some typical phenomena can occur such as, among the others, geomagnetic storms, sub-storms and ionospheric irregularities. In this frame the high latitude ionosphere may become highly turbulent showing the presence of small-scale (from centimetres to meters) structures or irregularities imbedded in the large-scale (tens of kilometers) ambient ionosphere. These irregularities produce short term phase and amplitude fluctuations in the carrier of the radio waves which pass through them. These effects are commonly called Amplitude and Phase Ionospheric Scintillations that can affect the reliability of GPS navigational systems and satellite communications. The goal of this proposal is to contribute to the understanding of the physical mechanisms responsible of the ionospheric scintillations as well as to data collecting for nowcasting/forecasting purposes at high latitude. As the scarceness of polar observations, the specific site near Ny-Ålesund is of particular experimental interest.

Mapping Geophysics Modelling Arctic Atmosphere ionospheric scintillation and TEC (Total Electron Content) monitoring.
59. Sun-Earth Interaction: Auroral Observations from Svalbard Islands with “ITACA”, ITalian All-sky-Camera for Auroral observations

Observation of the high latitude auroral activity, during the winter season, by means of automatic all-sky camera(s). Study of the high-latitude auroral activity, focusing on the so-called “dayside auroras”: a particular phenomenon concerning the direct precipitation of the thermalised solar wind plasma through the geomagnetic cusps, favourably observable from the Svalbard. The analysis of the data, mainly devoted to the “dayside auroras”, will concern the comparison of the optical images obtained from both the station of Ny-Alesund and the new one of Daneborg (Greenland) with the data collected by Wind, ACE, DSMP, Polar, and Cluster satellites. Starting from the 2002 season, the joint auroral observations from Ny-Alesund and Daneborg allows the monitoring of a relevant area involved in the “dayside aurora” phenomena.

Atmospheric processes "dayside auroras" high-latitude auroral observation Geophysics Modelling Arctic magnetic substorm Data management Atmosphere auroral oval ITACA²
60. TRANSCAT

TransCat main goal is the creation of a Decision Support System (DSS) for optimal water management of transboundary catchments, in context of the implementation of the EU Water Framework Directive.

International water management