The full list of projects contains the entire database hosted on this portal, across the available directories. The projects and activities (across all directories/catalogs) are also available by country of origin, by geographical region, or by directory.
To establish a modern, comprehensive checklist and database of the marine, benthic macrofauna in Greenland territorial waters from the shore to 1000 m depth Main gaps: Lack of recent field monitoring programmes. Missing data from the northernmost and very few data from south-eastern coastal stretches and adjoining marine territory. Too few recent fauna monitoring programs in the whole area.
To provide for the collection, interpretation, and dissemination of surface water quantity data and information and services that are vital to meet a wide range of water management, engineering and environmental needs across Canada. Main gaps: The current hydrometric network is deficient in terms of understanding the regional hydrology and river regimes across Canada. The map below integrates Environment Canada’s two key frameworks: the National Drainage Area Framework with the National Terrestrial Ecological Framework to identify network deficiencies. In order to have sufficient information there needs to be at least one active hydrometric station measuring natural flow in each corresponding ecodistrict within a sub-sub drainage area. This strategy ensures that there will be sufficient information to understand the hydrological processes and the interrelationships with the landscape. This information is essential for research and enhancing our predictive capabilities and data transfer. As the map shows, areas of sufficiency are concentrated in the southern, more populated regions of the country. Network sufficiency declines to the north and northeast, with great extents of northern Canada having no coverage at all. Network type: in-situ.water level and streamflow monitoring stations
Lack of consistent spatially representative and sufficiently long time series characterizing the state of permafrost and its dynamics under changing climatic conditions necessitates improvement and further development of observational networks. The purpose of this section is to provide an insight into the permafrost networks available in the Russian part of the Artic. Data characterizing the state and dynamics of Russian permafrost in the past several decades come from three independent sources. The first source of data is soil temperature observations up to 3.2 m. depth conducted at selected meteorological stations. These conventional measurements are not specifically targeted at studying permafrost parameters. Two other networks, authorized under the Global Climate Observing System (GCOS) and its associated organizations, have been developed for monitoring permafrost temperature and seasonal thaw depth. Temperature observations in the boreholes are conducted under the framework of the Thermal State of Permafrost (TSP) project. Another source is the data from the Circumpolar Active Layer Monitoring (CALM) project. Here we give brief description of these networks and results obtained so far for Russian permafrost regions. Main gaps: Although soil temperatures are measured at many of the Russian stations, observations in permafrost regions are sparse and do not capture the whole range of permafrost variability due to difference in climatic and biophysiographical conditions. • Evaluation of the soil temperature regime and dynamics through correlations with air temperatures is not an option, since only a small part of total variability is explained. • Other networks and measurements are needed to evaluate the dynamics of permafrost.
The main objective of the Arctic Avian Monitoring Network is to characterize the occurrence of birds in the Arctic to support regulatory responsibilities and conservation of birds and the biodiversity on which they depend. Temporal and spatial changes can be used to indicate changes in ecosystems that might otherwise be difficult to detect (e.g. marine areas) and can also be used to model predicted changes due to human activity. Main gaps: Large gaps both spatially and temporally. Many datasets cover short periods. Some species groups not well covered (e.g. landbirds and shorebirds) Network type: Network consists of programs divided into three species themes that combine common aspects of biology and human use: Waterfowl: e.g. ducks geese and swans • centered on aerial surveys of high density breeding areas and following non-breeding birds using satellite telemetry Seabirds: e.g. gulls, terns and auks • centered on surveys at breeding colonies and of birds at sea (either by direct observation or through the use of data loggers) Shorebirds: e.g. sandpipers, plovers and phalaropes • focused on broad-scale, stratified sampling of terrestrial areas and aerial surveys of non-marine habitats
Briefly and schematically, data on the availability of monitoring information on seabirds nesting in the Russian Arctic are given in the Table. It should be noted that the less favorable situation with monitoring of nesting sea birds is in the central Russian Arctic and its high-latitude regions where colonies exist of Arctic and high-Arctic type. No monitoring is being conducted there, and no systematic observations were made before. The situation is a little bit better with facultativecolonial disperse nesting species, they are rarely the subjects of long-term research and monitoring programs. The situation is better with the Arctic peripheral zones, i.e. White-Barents Seas and Bering-Far East sectors. There are areas covered by long-term observations, but they are often those that are out of the Arctic region according to CAFF definition (Onega Bay, Taui Bay, Commander Islands). Unfortunately, the most representative sea bird monitoring series in the CAFF area, collected in Kandalaksha and Wrangel Island reserves, were interrupted and/or disturbed in the 1990s (in terms of continuity of methods of material collection).
Our objective in present SAON meeting was to know more about SAON activities and plannings to coordinate and promote guidelines criteria for observations in the ARctic Present Spain Research in Arctic is performed mainly for universities and scientific institutions , down the responsability of the Science Department with the support of several national institutions including the Defense Department and Foreign Affairs Institutions are coordinated by the National Polar Committee. The National Scientific Program finance the activities in the polar zones Although our main scientific activities are in Antarctica the activity of Spain in Arctic is rapidly increasing following the fact that Arctic research is a priority task in our Science Program At present we have detected 16 scientific groups working activelly in the differnts fields of Arctic topics (glaciology, meteorology, permafrost, high atmosphere, ecology, physical oceanography, marine geology and biology) These activities are mainly performed in cooperation with Arctic countries Institutions via institutional or researchers contacts About our media to work in Arctic ocean Spain has at present two multiporposes oceanographic research ships In the last years our Ocanographic ship Hesperides has developed two campaigns in The area of Greenland and Svalvars Island in the fields of marine Geology , marine biology and physical oceanography For next summer Hesperides will perform a third oceanographic campaign close to the Atlantic coast of Greenland Other national institutions have been working in marine biology campaigns including fisheries stock evolution Spain has a National Centre of Polar Data were all researchers must enter their raw data gathered in the polar campaigns We considerer , at present , our interest to cooperate inside SAON board, considering that besides other possible cooperation to SAON tasks could be a cooperation with our Polar Data Centre
Atmosphere monitoring, cryosphere monitoring, atmosphere-biosphere interaction. In situ monitoring with automatic and manual systems (e.g. synoptic meteorological observations since 1908), measurements with ground-based reference systems of space-borne remote sensing instruments Network type: In situ monitoring with automatic and manual systems (e.g. synoptic meteorological observations since 1908), measurements with ground-based reference systems of space-borne remote sensing instruments
ArcticNet brings together scientists and managers in the natural, human health and social sciences with their partners in Inuit organizations, northern communities, government and industry to help Canadians face the impacts and opportunities of climate change and globalization in the Arctic. Over 110 ArcticNet researchers and 400 graduate students, postdoctoral fellows, research associates and technicians from 28 Canadian universities and 8 federal departments collaborate on 28 research projects with over 150 partner organizations from 15 countries. The major objectives of the Network are: • Build synergy among existing Centres of Excellence in the natural, human health and social Arctic sciences. • Involve northerners, government and industry in the steering of the Network and scientific process through bilateral exchange of knowledge, training and technology. • Increase and update the observational basis needed to address the ecosystem-level questions raised by climate change and globalization in the Arctic. • Provide academic researchers and their national and international collaborators with stable access to the coastal Canadian Arctic. • Consolidate national and international collaborations in the study of the Canadian Arctic. • Contribute to the training of the next generation of experts, from north and south, needed to study, model and ensure the stewardship of the changing Canadian Arctic. • Translate our growing understanding of the changing Arctic into regional impact assessments, national policies and adaptation strategies. Main gaps: [Not specified] Network type: Thematical observations:Yes Field stations: Yes on Land (see CEN sheet) and Marine (CCGS Amundsen) Community based observations: Yes Coordination: Yes
Temporal trend monitoring of contaminants in atmosphere and biota in Greenland. Modelling the atmospheric transport pathways and deposition of contaminants in the Arctic as well as determination of climate related parameters.
The main tasks of the SCSI include combating desertification, sand encroachment and other soil erosion, promotion of sustainable land use and reclamation and restoration of degraded land. The work is on different levels, from policy making and research, to extension services and management of large‐ and small‐scale reclamation projects. The total area of reclamation sites is about 4460 km2. The SCSI operates several district offices around Iceland with headquarters at Gunnarsholt in South Iceland. The total number of permanent staff is about 60. Over 600 farmers participate in reclamation activities in cooperation with the SCSI. These sites are monitored annually with site visits by SCSI staff. • The SCSI monitors vegetation dynamics, carbon sequestration in soils and vegetation in all land reclamation sites active since 1990 as a part of Iceland's commitment to the Kyoto emission imitation commitment. Over 500 plots are monitored since 2007 or about 100 annually, hence revisited every five years. • The SCSI also monitors streambank erosion. • The SCSI in collaboration with the University of Iceland, institutes and individuals around Iceland monitor phenology of selected plant species for determining long term impact of climate change on plants. The project started in 2010 with monitoring sites located in diverse conditions. Main gaps: Not specified Network type: ‐ Thematic observations ‐ Field stations ‐ Permanent monitoring plots
EMBOS is a continuation of BIOMARE and aims for integrating marine biological – biodiversity observations Long Term Large Scale in set of selected stations across Europe. Poland (IOPAS) is responsible for the Hornsund site and together with Norway (Norsk Polarinstitutt, UNIS, AKVAPLAN) IOPAS is responsible for the Kongsfjorden site. Main gaps: Sediment chemistry
SMEAR I –station (Station for Measuring Ecosystem – Atmosphere Relations) was built in 1991-1992 at the side of Värriö Subarctic Research Station to monitor the pollution originating from Kola Peninsula. Continuous measurements of trace gases, aerosols, photosynthesis growth of Scots pines and meteorology have been carried on by the University of Helsinki since 1992. The station is located at the northern border of Salla municipality, some 6 km’s from the Russian border and built on top of a 390 m high forested hill. A 16 meter high weather mast is mounted next to the measurement cabin. The closest source area for air pollutants are the mining and metallurgical industry at the Kola Peninsula with the most important point sources being Nikel, Montcegorsk and Zapolyarny, respectively. In addition to the measurements carried on by the University of Helsinki, Finnish Meteorological Institute (FMI) has been measuring both sulphates and heavy metals using filter sampling techniques. Also, respiration and photosynthesis of the soil has been measured campaign wise in the vicinity of the station. Trace gases have been measured at four different levels (2, 6.5, 9 and 15 m) above the ground until recently the three highest sampling levels were taken off. The sulphur dioxide concentration is measured with a pulsed fluorescence analyzer. Nitrogen oxides (most importantly NO and NO2) are measured with an analyzer that is based on chemiluminescence and ozone is measured with a photometric analyzer. Total aerosol concentration has been measured since 1991 and the particle size distribution since 1997. The cut-off diameter of the size distribution measurements was changed from 8 nm to 3 nm in 2003. The total concentration is measured using CPC (Condensation Particle Counter) and the size distribution with DMPS (Differential Mobility Particle Sizer) system. Photosynthesis of Scots pines is measured from living twigs using chambers placed on top of the trees. Also, the growth in width and length are measured. A wide range of meteorological parameters are measured at five different levels (2, 4, 6.6, 9, 15 ja 16 m). Network type: Automatic and manual monitoring of atmosphere and biosphere (incl. SMEAR I –station and synoptic weather observations) as well as tracking and monitoring wide range of flora and fauna (e.g. game, insects and berries).
DMI operates general weather observation for meteorological and climatological services. DMI operates geomagnetic observatories in Greenland DMI monitores stratospheric ozone and UV radiation DMI operatetes ocean monitoring and operational icecharting
The Environment Agency operates under the direction of the Ministry for the Environment. It's role is to promote the protection as well as sustainable use of Iceland’s natural resources, as well as public welfare by helping to ensure a healthy environment, and safe consumer goods. Areas of operation: 1. Information and advice for the public, businesses and regulatory authorities 2. Monitoring of environmental quality 3. Evaluation of environmental impact assessment and development plans 4. Operation supervision, inspection, operating permits, etc. 5. Assessment of conservation effects and registration of unique nature 6. Management and supervision of designated protected areas 7. Wildlife management and conservation 8. Eco‐labeling 9. Labeling and handling of toxic as well as other hazardous substances 10. Coordination of health and safety in public places 11. Coordination of local environmental and health inspectorates 12. Genetically modified organisms (GMO) Main gaps: Metadata archives and metadata availability Network type: ‐ Thematic observations ‐ Community based observations ‐ Coordination
The Centre for Northern Studies (www.cen.ulaval.ca; CEN: Centre d’études nordiques) is an interuniversity centre of excellence for research involving Université Laval, Université du Québec à Rimouski and the Centre Eau, Terre et Environnement de l'Institut national de la recherche scientifique (INRS). Members also come from the following affiliations: Université de Montréal, Université du Québec à Chicoutimi, à Montréal and à Trois-Rivières, Université de Sherbrooke, and the College François-Xavier Garneau. The CEN is multidisciplinary, bringing together over forty researchers including biologists, geographers, geologists, engineers, archaeologists, and landscape management specialists. The CEN community also counts two hundred graduate students, postdoctoral fellows, and employees. CEN’s mission is to contribute to the sustainable development of northern regions by way of an improved understanding of environmental change. CEN researchers analyze the evolution of northern environments in the context of climate warming and accelerated socio-economic change and train highly qualified personnel in the analysis and management of cold region ecosystems and geosystems. In partnership with government, industry and northern communities, CEN plays a pivotal role in environmental stewardship and development of the circumpolar North. CEN research activities are focused on three themes: 1 -Structure and function of northern continental environments. 2 -Evolution of northern environments in the context of global change. 3-Evaluation of the risks associated with environmental change and development of adaptation strategies. In 2009, CEN organised an international workshop with the European SAON network SCANNET and also partners throughout Canada. The workshop culminated in the formal incorporation of CEN stations within SCANNET (http://www.scannet.nu/). Main gaps: [Not specified] Network type: CEN operates the CEN Network, an extensive network of meteorological and field stations that were established in consultation with northern communities. The CEN Network comprises over 75 climate and soil monitoring stations and eight field stations distributed across a 4000 km North-South gradient from boreal forest to the High Arctic. The eight field stations are situated at the following sites: Radisson, Whapmagoostui- Kuujjuarapik, Umiujaq, Lac à l’Eau Claire (in the proposed new park Tursujuq), Boniface River, Salluit, and Bylot and Ward Hunt Islands, which are part of two National Parks in Nunavut. The main field station at the heart of the CEN Network is at Whapmagoostui-Kuujjuarapik.
The national program of intensive forest monitoring is managed by the Finnish Forest Research Institute (Metla). In 2011 five of the 18 Finnish intensive monitoring plots situated in Finnish Lapland (Fig. 5.1.: Sevettijärvi, Pallasjärvi and three plots in Kivalo). Finnish national intensive forest monitoring network is part of pan-European ICP Forests network of ca. 800 plots (http://icp-forests.net/page/level-ii). ICP Forests (the International Co-operative Programme on Assessment and Monitoring of Air Pollution Effects on Forests) operates under the UNECE Convention on Long-range Transboundary Air Pollution. These intensive monitoring plots were established in co-operation of ICP Forests and European Commission in mid 1990’s. European Commission co-financed forest monitoring under forest monitoring regulations until the end of 2006 when the Forest Focus regulation (EC No 2152 / 2003) expired. During 2009-2011 part of these intensive forest monitoring plots were included in Life+-project called “FutMon” (Further Development and Implementation of an EU-level Forest Monitoring System: http://www.futmon.org/). Monitoring is carried out following the manual of ICP Forests (http://icp-forests.net/page/icp-forests-manual) and the monitoring data is submitted once a year to the ICP Forests database in Hamburg. Every year Programme Coordinating Centre of ICP Forests publishes technical and executive reports on the condition of forests in Europe. ICP Forests monitoring activities provide information also for a number of criteria and indicators of sustainable forest management as defined by the Forest Europe Ministerial Conference on the Protection of Forests in Europe. Network type: National nation-wide monitoring
• collect field based measurements of permafrost thermal state and active layer thickness (Essential Climate Variables identified by WMO/GCOS) • disseminate information on permafrost thermal state and active layer thickness (increase public availability • document current permafrost conditions and changes in these conditions and conduct analysis to explain these changes • provide essential information on permafrost conditions for decision making in Canada’s north to ensure sustainable development and to develop strategies to adapt to climate change Main gaps: Large regional gaps still exists especially in central region between Mackenzie Valley and Hudson Bay There is also a lack of long-term funding to maintain network operation and ensure ongoing data collection. Network type: Thematic observations (permafrost thermal state and active layer thickness), consisting of several field sites (>150) throughout northern Canada (see recent GCOS ECV report for map). Most sites in remote areas Limited community based monitoring
Fish stock assessment and fisheries management Cooperation with Greenland Institute of Natural Resources (GNI) on: i) stock assessment and fisheries management, survey planning and evaluation, ii) stock and fish community dynamics under climate change, iii) fish species interactions, iiii) Education of young scientist at GNI. Oceanography and climate change impact on marine ecosystems. Cooperation with GNI, Danish Meteorological Institute (DMI) and Natural Environmental Research Institute (DMU) on: i) physical oceanography and climate forcing, ii) biological oceanography, iii) population genetics. The Internation Polar Year IPY) project ECOGREEN under leadership of DMU. Contribution to biological oceanography, e.g. survey of RV Dana (the research vessel of DTU-AQUA) to West Greenland in 2008 Main gaps: Continuous financial support - funding
To collect hydrological and biochemical data in Horsund, Spitsbergen in the area of Revdalen Valley. Main gaps: Summer season data only, with gaps due to observer and equipment availability.
1. Snow cover (Spitsbergen) - Study of multi-year changes in snowiness near Nordenskiöld Land - Study of impact of spring-summer snow melting on superimposed (infiltration) ice formation on glacier surface - Study of mechanical and thermophysical properties of snow cover in different Spitsbergen landscapes - Study of impact of snowiness and summer melting conditions on the STL conditions under modern climate change (by the example of multi-year measurements near Barentsburg) - Study of structure and dynamics of large and multi-year snowfields as indicators of current climate change in this region. Contact person: Nikolay Osokin (jsokinn@mail.ru), Ivan Lavrentiev