Dirigibile Italia, Ny-Ålesund: projects/activities

To edit or add records to any of the catalogs, log in or create an account.

Directory entires that have specified Dirigibile Italia, Ny-Ålesund as one of the geographic regions for the project/activity and are included in the AMAP, ENVINET, SAON and SEARCH directories. Note that the list of regions is not hierarchical, and there is no relation between regions (e.g. a record tagged with Nunavut may not be tagged with Canada). To see the full list of regions, see the regions list. To browse the catalog based on the originating country (leady party), see the list of countries.

It is also possible to browse and query the full list of projects.

Displaying: 1 - 6 of 6
1. ATMospheric Fluxes from Arctic Snow Surfaces - ATMS

The central objectives of the proposed ATMAS project are:  to quantify the photo-chemically triggered NOx and HONO re-emission fluxes from permanently and seasonally snow-covered surfaces in the Arctic near Ny-Ålesund,  to quantify the sources of NO3 in these snow-covered surfaces. In detail, the following scientific objectives of ATMAS can be distinguished: 1. to quantify atmospheric gradient fluxes of HNO3, HONO, particulate nitrogen compounds, and nitrogen in precipitation (snow and rain) above snow surfaces; 2. to quantify the emission of NOx and HONO from the snow pack as atmospheric gradient fluxes 3. to formulate an influx-outflow relationship that can be used in dependence on the snow type for (photo-)chemical atmospheric process models. The results of this research may be expanded to a regional (European) or global scale, to suggest how the NOx and HONO re-emission process and its consequences can be included into regional emission, dispersion and deposition models used in Europe.

Atmospheric processes Ozone gaseous ammonia nitrogen bio-geochemical cycle Pollution sources Climate change tropospheric boundary layer nitrogen oxides Ice Emissions SNOW and SNOWPACK Arctic Data management photochemical production Atmosphere Human health
2. Sun-Earth Interaction: Auroral Observations from Svalbard Islands with “ITACA”, ITalian All-sky-Camera for Auroral observations

Observation of the high latitude auroral activity, during the winter season, by means of automatic all-sky camera(s). Study of the high-latitude auroral activity, focusing on the so-called “dayside auroras”: a particular phenomenon concerning the direct precipitation of the thermalised solar wind plasma through the geomagnetic cusps, favourably observable from the Svalbard. The analysis of the data, mainly devoted to the “dayside auroras”, will concern the comparison of the optical images obtained from both the station of Ny-Alesund and the new one of Daneborg (Greenland) with the data collected by Wind, ACE, DSMP, Polar, and Cluster satellites. Starting from the 2002 season, the joint auroral observations from Ny-Alesund and Daneborg allows the monitoring of a relevant area involved in the “dayside aurora” phenomena.

Atmospheric processes "dayside auroras" high-latitude auroral observation Geophysics Modelling Arctic magnetic substorm Data management Atmosphere auroral oval ITACA²
3. Determination of atmospheric fluxes of Radionuclides, Heavy Metals and Persistent Organic pollutants in well defined watershed, lakes and coastal marine sediments of Svalbard from the beginning of nuclear age

The 2003 field activity will be mainly dedicated to coring activity which includes: 1. the sampling of snow and ice cores from a Ny-Ålesund nearby glacier (midre Lovenbreen). 2. the collection of near coast (Kongsfjorden) and lakes sediments (maximum under pack depth 30 m). Sampling collection of ice and sediment cores will be performed using a portable, electric operated, sampling corer. The transport of all materials up to each sampling station should be performed with snowcats.

Atmospheric processes Biology Hydrography Heavy metals Radioactivity Radionuclides Arctic Persistent organic pollutants (POPs) Sediments Atmosphere Ecosystems
4. Measurement and Modeling the Mercury Depletion Events in the Arctic at the Ny-Ålesund Site

One of the major benefits of performing measurements at Ny-Ålesund is the availability of a monitoring station on Mount Zeppelin, 474m asl. Given the typical height of the Arctic inversion layer during the envisaged measurement period, it will be possible to continuously monitor mercury and particulate in the free troposphere at the same time as performing ground level monitoring. The simultaneous measurements above and below the boundary layer should provide evidence for the mode of elemental Hg replenishment, whether it is from due to exchange with the free troposphere, or transport occurring at sea level. The proposed collaboration, by collecting data from two strategically placed Arctic stations, in the paths of different air masses and data from above the Arctic inversion layer would provide the most comprehensive set of Arctic mercury measurements performed to date.

Pathways Atmospheric processes Mercury depletion Emissions Geochemistry Data management Atmosphere Ecosystems
5. Chlorofluorocarbons, Hydrogenated Halocarbons and Degradation Products of the Hydrogenated Halocarbons in the Arctic Environment

Work program: Grab air samples will be collected in sampling sites not influenced by local emission sources for the determination of chlorofluorocarbons and of hydrogenated halocarbons. A 15 days sampling campaign is scheduled. Samples will be analysed in our Institution by using the analytical methodology here described and results obtained will be evaluated and compared with data obtained, by using the same analytical methodology, analysing air samples collected in other remote and semi remote sites. For the analysis of the hydrogenated halocarbon degradation products snow and water samples will be collected as well, according to the different season of the year. The collected samples will be then derivatized and analysed in our Institution for the evaluation of the presence of such compounds in remote areas.

Atmospheric processes Ozone Climate Climate change Emissions Atmosphere
6. Cloud Effects on UV Irradiance Measurements (CEUVIM)

The goal of this project is to find the relationships between the UV solar spectral irradiances sampled at ground level in different cloudy situations. This information will be useful for a double target: to a better tuning of the UV Green model outputs and to evaluate the effects of the solar UV radiation on biological target. A second target is to have information about the cloud effect on computing the Umkehr model output (vertical Ozone profiles). This goal will be carried out installing in Ny-Ålesund a spectrophotometer Brewer to sample the UV irradiance synchronous with an automatic photo-camera taking pictures of sky. An analytical study of the two kinds of data allows finding the relationships searched.

Atmospheric processes Ozone UV solar radiation UV radiation Climate change Atmosphere Clouds effects