Directory entires that have specified Germany as the primary or lead country for the project/activity and are included in the AMAP, ENVINET, SAON and SEARCH directories. To see the full list of countries, see the countries list. The specified country may not be the geographic region where the activity is taking place - to select a geographic region, see the list of regions.
It is also possible to browse and query the full list of projects.
To edit or add records to any of the catalogs, log in or create an account.
Plankton of shallow polar freshwater water bodies is exposed to increasing levels of ultraviolet radiation (UVR) due to the limited water depth. Daphnia (Crustacea, waterflea) and algae are common representatives of the food chain in these water bodies. Daphnia almost exclusively use lipids for energy storage, which they obtain from their food (mainly algae). Therefore, Daphnia and algae are closely linked to each other. Preliminary experiments on the UV-induced damage in phyto- and zooplankton point to lipids as one of the key players. With this application we want to identify how algae specific lipids and fatty acids (FA) are modified by UVR. The factors modifying UV-doses to the animals and their food are depth of the waterbody and DOC (absorbs UV). A pondsurvey shall provide a wide spectrum on ponds which vary in DOC and depth. Lipid analysis of Daphnia and their food of these ponds as well as physical parameters of the pond waters shall identify correlations between UV-exposure and specific fatty acids. This shall enable us to estimate the effect of solar UVR on the freshwater plankton community in polar ponds.
Observation how UV-radiation affects recruitment on hard substrate in the upper sublitoral zone.
Photoinhibition of photosynthesis by UV radiation, the formation of UV-screening pigments, DNA damage by UV radiation as well as DNA repair mechanisms will be determined in marine macroalgae of the Kongsfjord. Moreover, algae from different water depths will be transplanted by divers into areas with opposite light climate or covered by UV-screening filters and their physiological reactions tested. Additionally, the susceptability of the unicellular algal spores to UV-radiation will be tested. The results will allow insights into the effect of UV and photosynthetically active radiation on the zonation of macrocalgae and on the structure of phytobenthic communities. The data will be used to model the effects of increased of UV-radiation due to stratospheric ozone depletion on the Kongsfjord phytobenthic communities.
This study will be designed to determine the response mechanisms of representative species of macrophytes along the tide flat to provide the physiological basis for answers for ecological questions, in particular how the community structure of various beds of macroalgae from the intertidal to the subtidal (eulittoral to sublittoral) region of the coastal ecosystem is affected by enhanced UV radiation. In situ measurement of photosynthetic efficiency, growth, community structure and succession will be conducted to investigate how do different species of macrophytes respond to changes in the light environment over a depth gradient and across seasons of the year. It is hypothesized that the differences in the ability to tolerate stress are the main factors controlling the distribution pattern of macrophytes. With the limited understanding in the control of tolerance, elucidating the mechanism of stress in the physiology and ecology of the organisms will allow us to quantify the impediments encountered by organisms inhabiting the tide flats. Objectives: 1. To measure the daily and seasonal variation in photosynthetically active and ultraviolet radiation. 2. To characterize the macrophyte community structure of the coastal habitat. 3. To perform UV exclusion and UV supplementation experiments in order to assess its effect on the growth of some macrophyte species in the field and in mesocosms. 4. To assess the prevention of UV damage in selected macroalgae by production of sunscreen pigments. 4. To determine the recruitment rate, recolonization pattern and succession under PAR and varying UVR condition.