AMAP Project Directory

AMAP Project Directory

The AMAP Project Directory (AMAP PD) is a catalog of projects and activities that contribute to assessment and monitoring in the Arctic. The Arctic Monitoring and Assessment Programme (AMAP), is a working group under the Arctic Council, tasked with monitoring and asessing pollution, climate change, human health and to provide scientific advice as a basis for policy making.

The directory, which is continously updated, documents national and international projects and programmes that contribute to the overall AMAP programme, and provides information on data access as well as a gateway for the AMAP Thematic Data Centres.

Other catalogs through this service are ENVINET, SAON and SEARCH, or refer to the full list of projects/activities.

To edit or add records to any of the catalogs, log in or create an account.

Displaying: 21 - 40 of 62 Next
21. External radiation dose rate monitoring in Finnish Lapland

Part of the continuous nationwide monitoring of radionuclides in Finland. The dose rate monitoring network in Finnish Lapland comprise 32 automatic measurement stations (Finnish nation-wide monitoring network consists of about 257 stations equipped with GM tubes). Three of the stations are equipped with LaBr3-detectors measuring a gammaspectrum with 10 minute intervals. The network is intended for civilian defence and surveillance purposes, not for research. It is a good early warning system in radiation fallout situation. Every monitoring station have individual alarm level: 7 days average dose rate + 0.1 microSv/h. The dense network indicate also the extent of the radioactive contamination.

external radiation monitoring Radioactivity Atmosphere
22. Continous monitoring of gammanuclides, strontium (beta) and tritium in deposition in Finnish Lapland

Part of the continuous nationwide monitoring of radionuclides in Finland. The dose rate monitoring network in Finnish Lapland comprise 32 automatic measurement stations (Finnish nation-wide monitoring network consists of about 257 stations equipped with GM tubes). Three of the stations are equipped with LaBr3-detectors measuring a gammaspectrum with 10 minute intervals. The network is intended for civilian defence and surveillance purposes, not for research. It is a good early warning system in radiation fallout situation. Every monitoring station have individual alarm level: 7 days average dose rate + 0.1 microSv/h. The dense network indicate also the extent of the radioactive contamination.

tritium strontium Radioactivity caesium Radionuclides fallout nuclides Atmosphere iodine deposition
23. Monitoring of airborne radioactive substances in Lapland

Part of the continuous nationwide monitoring of radionuclides in Finland. STUK is responsible for monitoring of radioactivities in atmosphere. STUK operates a network of eight aerosol samplers from which three are located in Finnish, Lapland at Rovaniemi, Sodankylä and Ivalo. The sampling is done either weekly or bi-weekly. Gammaspectroscopic measurements are done in the laboratory in Rovaniemi. The lowest activities are detected at microBq/m3 level.

sodium. beryllium Radioactivity caesium airborne radionuclide monitoring Radionuclides Atmosphere iodine
24. Oulanka, EMEP station, Northern Finland

Monitoring of air quality and deposition.

Atmospheric processes Ozone Heavy metals Long-range transport Acidification Contaminant transport Atmosphere Temporal trends
25. National deposition monitoring, Northern Finland

Monitoring of direct deposition. Project is run by Finnish Meteorological Institute (FMI).

Atmospheric processes Heavy metals Long-range transport Acidification Arctic Atmosphere Temporal trends
26. Pallas, AMAP station, Northern Finland

The overall objectives for operation of the station will follow those defined in the AMAP programme. The main interests are the levels and trends of airborne toxic pollutants (POPs and heavy metals) in northern Fennoscandia.

Atmospheric processes Organochlorines PCBs Arctic haze Heavy metals PAHs Long-range transport Acidification Contaminant transport Arctic Persistent organic pollutants (POPs) Pesticides Atmosphere Temporal trends
27. Physics, Chemistry and Biology of Atmospheric Composition and Climate Change, Finnish Center of Excellence

The main objective is to study the importance of aerosol particles on climate change and on human health. Particularly, the focus will be on the effect of biogenic aerosols on global aerosol load. During the recent years it has become obvious that homogeneous nucleation events of fresh aerosol particles take frequently place in the atmosphere, and that homogeneous nucleation and subsequent growth have significant role in determining atmospheric aerosol load. In order to be able to understand this we need to perform studies on formation and growth of biogenic aerosols including a) formation of their precursors by biological activities, b) related micrometeorology, c) atmospheric chemistry, and d) atmospheric phase transitions. Our approach covers both experimental (laboratory and field experiments) and theoretical (basic theories, simulations, model development) approaches.

Atmospheric processes UV radiation Climate Atmosphere
28. ACCENT Atmospheric Composition Change, the European Network of Excellence

The overall goals of ACCENT are to promote a common European strategy for research on atmospheric composition change, to develop and maintain durable means of communication and collaboration within the European scientific community, to facilitate this research and to optimise two-way interactions with policy-makers and the general public. ACCENT will establish Europe as an international leader in atmospheric composition change research, able to steer research agendas through its involvement in major international programmes. ACCENT furthermore aims to become the authoritative voice in Europe on issues dealing with atmospheric composition change and sustainability.

Pathways Atmospheric processes Long-range transport (biosphere-atmosphere) interaction Contaminant transport Modelling Data management Atmosphere
29. Atmospheric Monitoring Network for Antropogenic Pollution in Polar Regions (ATMOPOL)

The project aims at establishing a long-term Arctic-Antarctic network of monitoring stations for atmospheric monitoring of anthropogenic pollution. Based upon the long and excellent experiences with different scientific groups performing air monitoring within the Arctic Monitoring and Assessment Programme (AMAP), an expanded network will be established including all AMAP stations and all major Antarctic “year-around” research stations. As an integrated project within the “International Polar Year 2007-08” initiative, the ATMOPOL co-operation intend to • Establish a long-term coordinated international Arctic-Antarctic contaminant programme. • Develop and implement a joint sampling and monitoring strategy as an official guideline for all participating stations. • Support bi-polar international atmospheric research with high-quality data on atmospheric long-range transport of contaminants (sources, pathways and fate). • Support future risk assessment of contaminants for Polar Regions based on effects of relevant contamination levels and polar organisms Based upon the well-established experiences of circum-Arctic atmospheric contaminant monitoring in the Arctic under the AMAP umbrella, a bi-polar atmospheric contaminant network will be established and maintained. In conjunction with the polar network of atmospheric monitoring stations for air pollution, surface-based and satellite instrumentation will be utilised to provide the characterization of the Arctic atmospheric-water-ice cycle. Together with numerical weather prediction and chemical transport model calculations, simultaneous measurements of pollutants at various locations in the Arctic and Antarctic will enhance our understanding of chemical transport and distribution as well as their long-term atmospheric trends. In addition to investigating the importance of atmospheric transport of pollutants an understanding of the transference and impact of these pollutants on both terrestrial and marine environments will be sought. A secretariat and a “scientific project board” will be established. During this initial phase of the project (2006), a guideline on priority target compounds, sampling strategies, equipment and instrumentation, analytical requirements, as well as quality assurance protocols (including laboratory intercalibration exercises) will be developed and implemented. The ATMOPOL initiative aims to address highly relevant environmental change processes and, thus, will strive to answering the following scientific questions: • How does climate change influence the atmospheric long-range transport of pollutants? • Are environmental scientists able to fill the gaps in international pollution inventories and identification of possible sources for atmospheric pollution in Polar Regions? • What are the differences in transport pathways and distribution patterns of various atmospheric pollutants between Arctic and Antarctic environments? Why are there such differences? What is the final fate of atmospherically transported pollutants and how does this impact on the environment and indigenous people?In order to understand the underlying atmospheric chemistry of pollution, e.g. atmospheric mercury deposition events, routine surface measurements of UV radiation as well as campaign related measurements of UV radiation profiles will also be included.The project will establish a cooperative network on atmospheric contaminant monitoring in Polar Regions far beyond the IPY 2007/08 period and is, thus, planned as an “open-end” programme. All produced data will be available for all participating institutions for scientific purposes as basis for joint publications and reports from the ATMOPOL database to be developed.

Pathways Atmospheric processes Heavy metals Long-range transport Contaminant transport Persistent organic pollutants (POPs) Atmosphere
30. Mercury in peat bogs

Peat samples from Greenland already collected and dated will be analysed for mercury in order to assess term time trends of mercury deposition during this century.

Heavy metals Atmosphere Temporal trends
31. Millimetre wave radiometer for stratospheric trace gas measurements

A millimeter wave radiometer is started operation at the Swedish Institute of Space Physics, Kiruna, Sweden. The location of the instrument (67.8 N, 20.4 E) allows continuous observation of the evolution of ozone and ozone related trace gases in the Arctic polar stratosphere. It is designed for measurements of thermal emission lines around 204 Ghz. At this frequency observations include of ozone, chlorine monoxide, nitrous oxide, and nitric acid.

Ozone Geophysics Climate Modelling Arctic Atmosphere Temporal trends
32. Differential Optical Absorption Spectrometer

The DOAS instrument consists of grating spectrometer covering the visible and near ultraviolet spectral region. Zenith-scattered sunlight is collected by simple one-lens telescopes and fed via optical fiber bundles into the spectrometers, where atmospheric absorption spectra are obtained. The instrument runs automatically. Total column densities of the stratospheric trace species ozone, NO2, BrO, and OClO are retrieved from the spectra using the DOAS algorithm. These are species that play a major role in ozone chemistry, either by themselves in ozone destruction (BrO) or as indicators of chlorine activation/deactivation (OClO). The chemistry and dynamics of ozone destruction is investigated, e.g. with respect to the location of the polar vortex during the winter. The instrument is also useful for detection of polar stratospheric clouds using the zenith-sky colour index method.

Ozone Geophysics Modelling Arctic Atmosphere Temporal trends
33. Fourier Transform Infra-Red spectrometry

FT-IR spectrometers are capable to quantifiy the total column amounts of many important trace gases in the troposphere and stratosphere. At present the following species are retrieved from the Kiruna data: O3 (ozone), ClONO2, HNO3, HCl, CFC-11, CFC-12, CFC-22, NO2, N2O, NO, HF, C2H2, C2H4, C2H6, CH4, CO, COF2, H2O, HCN, HO2NO2, NH3, N2, and OCS Selected research topics and activities: chemical ozone depletion by observation of key species (O3, ClONO2, HNO3, HCl, ..) details of the ozone formation process by isotopic studies in ozone profile retrieval to detect dynamical changes transport studies of chemical tracers and tropospheric pollutants satellite validation

Atmospheric processes Ozone Organochlorines Geophysics chlorofluorocarbons (CFC) Modelling Emissions Arctic Atmosphere Temporal trends
34. Fourier Transform Infra-Red spectrometry

FT-IR spectrometers are capable to quantifiy the total column amounts of many important trace gases in the troposphere and stratosphere. At present the following species are retrieved from the Kiruna data: O3 (ozone), ClONO2, HNO3, HCl, CFC-11, CFC-12, CFC-22, NO2, N2O, NO, HF, C2H2, C2H4, C2H6, CH4, CO, COF2, H2O, HCN, HO2NO2, NH3, N2, and OCS Selected research topics and activities: chemical ozone depletion by observation of key species (O3, ClONO2, HNO3, HCl, ..) details of the ozone formation process by isotopic studies in ozone profile retrieval to detect dynamical changes transport studies of chemical tracers and tropospheric pollutants satellite validation

Atmospheric processes Ozone Organochlorines Geophysics chlorofluorocarbons (CFC) Modelling Emissions Arctic Atmosphere Temporal trends
35. SKERRIES - stratospheric climatology by regular balloon-borne

Objective: to collect climatology information on the seasonal and year-to-tear variability of stratospheric CFCs, water vapour and atmospheric electrical parameters.

Atmospheric processes Geophysics Climate variability Spatial trends Climate change Arctic Atmosphere Temporal trends
36. Descartes

Objectives 1. To develop the measurement technique further, providing more accurate measurements and extend the method to a larger number of trace species 2. To monitor the presence of CFC:s and other longlived anthropogenic tracers in the stratosphere 3. To use long-lived anthropogenic species as tracers of atmospheric motion, in particular for comparison with atmospheric models Reserarchers: Descartes is a joint research programme currently involving N.R.P Harris and J.A. Pyle, Centre for Atmospheric Science at the Department of Chemistry, University of Cambridge, U.K., and Hans Nilsson and Johan Arvelius, Swedish Institute of Space Physics, Kiruna, Sweden

Atmospheric processes Ozone Geophysics Chlorofluorocarbons (CFC) Emissions Arctic Atmosphere Temporal trends
37. Long-Term and Solar Variability effects in the Upper Atmosphere

Objective: to determine how solar activity influences temperatures, winds, electric currents and minor constituents and to allow possible anthropogenic influences to be determined. Uses primarily measurements by the ESRAD and EISCAT radars, plus ground-based and balloon-borne measurements of atmospheric electric fields and currents.

Atmospheric processes Noctilucent clouds Geophysics Climate variability Solar Proton Events Climate Climate change Modelling Emissions Arctic Atmosphere Polar mesospheric summer echoes (PMSE) Temporal trends
38. Investigations of tropospheric aerosols by lidar

A tropospheric lidar system with a Nd:YAG-Laser was installed at the Koldewey-Station in 1998. It operates at a laser wavelengths of 355, 532, and 1064 nm with detection at 532 nm polarised and depolarised, and at Raman wavelengths like 607nm (nitrogen). It records profiles of aerosol content, aerosol depolarisation and aerosol extinction. During polar night the profils reach from the ground up to the tropopause level, while during polar day background light reduces the altitude range. The main goal of the investigations is to determine the climate impact of arctic aerosol. Analysis of the climate impact will be performed by a high resolution regional model run at the Alfred Wegener Institute (HIRHAM). The lidar system is capable to obtain water vapour profiles in the troposphere. Water vapour profiles are crucial for the understanding of the formation of aerosols. The water vapour profiles are also used for the validation of profiles measured by the CHAMP satellite from 2001 onwards.

aerosols Atmospheric processes Arctic haze Geophysics tropospheric aerosols Climate variability Long-range transport Climate ASTAR Climate change Arctic Local pollution water vapour Atmosphere troposphere water vapor
39. Stratospheric observations with LIDAR technique (NDSC)

The stratospheric multi wavelength LIDAR instrument, which is part of the NDSC contribution of the Koldewey-Station, consists of two lasers, a XeCl-Excimer laser for UV-wavelengths and a Nd:YAG-laser for near IR- and visible wavelengths, two telescopes (of 60 cm and 150 cm diameter) and a detection system with eight channels. Ozone profiles are obtained by the DIAL method using the wavelengths at 308 and 353 nm. Aerosol data is recorded at three wavelengths (353 nm, 532 nm, 1064 nm) with depolarization measurements at 532 nm. In addition the vibrational N2-Raman scattered light at 608 nm is recorded. As lidar measurements require clear skies and a low background light level, the observations are concentrated on the winter months from November through March. The most prominent feature is the regular observation of Polar Stratospheric Clouds (PSCs). PSCs are known to be a necessary prerequisite for the strong polar ozone loss, which is observed in the Arctic (and above Spitsbergen). The PSC data set accumulated during the last years allows the characterization of the various types of PSCs and how they form and develop. The 353 and 532 nm channels are also used for temperature retrievals in the altitude range above the aerosol layer up to 50 km.

Aerosols Atmospheric processes Ozone Polar Stratospheric Clouds UV radiation Geophysics Climate variability stratosphere Climate Climate change Aerosol Arctic PSCs Atmosphere LIDAR UV
40. C-ICE 2001

The Collaborative Interdisciplinary Cryospheric Experiment (C-ICE) is a multi-year field experiment that incorporates many individual projects, each with autonomous goals and objectives. The science conducted has directly evolved from research relating to one of four general themes: i. sea ice energy balance; ii. numerical modeling of atmospheric processes; iii. remote sensing of snow covered sea ice; and iv. ecosystem studies.

Atmospheric processes Biology Mapping Climate variability Spatial trends Remote Sensing Sea ice Climate change Shipping Modelling Ice Polar bear Oceanography Arctic Ice cores GIS Energy Balance Food webs Data management MicroWave Scattering Atmosphere Ocean currents Ecosystems Marine mammals