AMAP Project Directory

AMAP Project Directory

The AMAP Project Directory (AMAP PD) is a catalog of projects and activities that contribute to assessment and monitoring in the Arctic. The Arctic Monitoring and Assessment Programme (AMAP), is a working group under the Arctic Council, tasked with monitoring and asessing pollution, climate change, human health and to provide scientific advice as a basis for policy making.

The directory, which is continously updated, documents national and international projects and programmes that contribute to the overall AMAP programme, and provides information on data access as well as a gateway for the AMAP Thematic Data Centres.

Other catalogs through this service are ENVINET, SAON and SEARCH, or refer to the full list of projects/activities.

To edit or add records to any of the catalogs, log in or create an account.

Displaying: 41 - 60 of 71 Next
41. Monitoring POPs and heavy metals in the merlin (Falco columbarius)

To monitor levels of pollutants in merlin by analysis of POPs and heavy metals in eggs and feathers. /Feathers and addled eggs of merlin were collected in 1992, 1993, 1994, 1999 and 2000 for chemical analysis of POPs and heavy metals. Comparisons with eggs from museum collections show that there has been a significant shell thinning in eggs of Norwegian merlins. From 1947 up to 1990 the eggs were on average ca. 15% thinner than normal and after 1990 the thinning has been ca. 10%. There are still high concentrations of DDE to reduce reproductive output in some cases. The PCB levels are low compared to the DDE levels and the concentrations of other chlorinated hydrocarbons are also low. Results from mercury analyses indicate possible effects on breeding performance in some adults.

Biological effects Organochlorines PCBs Heavy metals Long-range transport Spatial trends Contaminant transport merlin Persistent organic pollutants (POPs) Food webs Pesticides Temporal trends terrestrial birds
42. Effects of Persistent Organic Pollutants (POPs) on the Immune Response of Glaucous Gull (Larus hyperboreus)

The present project includes one pilot study of wild adult glaucous gull (Larus hyperboreus) and one experimental study of glaucous gull chicks raised in captivity. The pilot study of adult gulls gave us enough blood and tissue samples to develop the methods needed for immune system analysis in the laboratory experiment. In the experimental study a total of 39 glaucous gull chicks were hatched and raised in captivity in Svalbard, Norway. The chicks were divided into two groups. One experimental group (20 chicks) was given food that mimicked the “natural” food found in the marine environment. The control group (19 chicks) was given “clean” food. After 56 days the chicks were sacrificed in order to collect samples for analyses of organochlorines (OCs) and immunocompetence measurements. The experimental group had 2.8, 3.9, 5.0, and 6.1 time’s higher concentrations of HCB, Oxychlordane, ?DDT, and ?PCB, respectively, compared to the control group at day 56. All chicks used in the experiment were immunised with various vaccines and sera in order to test their ability to respond against foreign antigens. The experimental chicks produced low levels of virus neutralising antibodies when tested against the herpes virus and reovirus. They produced higher levels of neutralising antibodies when tested to tetanus toxoid. There was, however, no difference between the experimental groups with regard to the mean antibody titres. The chicks in both groups also responded to the influenza virus by increasing the production of specific antibodies. However, the mean antibody titre in the exposed group was significantly lower than in the control group. The mitogen-induced response of blood lymphocytes to PHA and LPS was significantly higher in the exposed group compared to the control group. The specific response of blood lymphocytes to Con A, PWM, KLH, TET, and PPD was higher in the exposed group compared to the control group. However, do to high variance in the exposed group there was no significant difference between groups with regard to the lymphocyte response to these mitogens. The results from the present study indicate a toxic effect of OCs on the glaucous gull chicks, which induced a systematic activation of the immune system. Further work on data will be performed.

effects Biological effects Organochlorines PCBs Fish Long-range transport glaucous gull Persistent organic pollutants (POPs) Seabirds immune system Pesticides
43. Persistent organic pollutants in marine organisms in the marginal ice zone near Svalbard: Bioconcentration and biomagnification

Due to the high organochlorine concentrations reported in Arctic top predators, and the potential transport of contaminants with the drifting sea-ice in the Arctic, organisms constituting lower trophic levels living in association with sea-ice have been proposed as susceptible of uptake of high loads of organic pollutants. The present project studies the organochlorine occurrence in organisms living in the marginal ice zone north of Svalbard and in the Fram Strait. This includes both ice fauna (ice-amphipods), zooplankton, polar cod and different seabird species foraging in the marginal ice zone. Our objectives are to investigate: *The bioaccumulation of organochlorines in ice-associated amphipods in relation to diet preference, spatial variation due to sea ice drift route, size, sampling year, uptake and distribution within the body. *Comparison of organochlorine contamination in pelagic and ice-associated organisms at the similar trophic position, to investigate the effect of sea ice as a transporter and concentrator of pollutants. *Spatial variation in zooplankton species, related to differences in water masses and exposure to first year or multi year sea ice. *The contamination load in different seabirds feeding in the marginal ice zone, in relation to diet choice and estimated trophic position, taxonomically closeness and the induction of hepatic CYP P450 enzymes.

habitats Biology sea ice drift route Organochlorines PCBs Fish Long-range transport Spatial trends Sea ice Contaminant transport Ice trophic positions Arctic Persistent organic pollutants (POPs) Seabirds Food webs metabolism Pesticides ice-associated organisms Diet zooplankton
44. Effects of persistent organic pollutants on polar bears in Svalbard

The study covers many areas of ecotoxicology research on polar bears. Monitoring of POP levels and studies of effects on endocrine disruption, immune system, reproduction, and demography are all parts of the study.

Biological effects Biology Populations Organochlorines PCBs Heavy metals Spatial trends Climate change Polar bear Persistent organic pollutants (POPs) Reproduction Pesticides Temporal trends Marine mammals
45. Monitoring of bioaccumulating compounds in terrestrial environment and environmental specimen banking

The monitoring is focused on risk assessment of LRTAP -type substances in terrestrial foodchains of the Boreal and subarctic environment. The concentration levels in precipitation, in the soil humus and in the indicator species (e.g. red woodants, common shrew) are studied annually in the seven areas locating in the Southern, Middle and Northern Finland. Possible gradients and changes in concentration levels between the Southern and Northern environments will be a part of the base data for risk assessment and pollution development in Finland.

Biology Organochlorines PCBs Heavy metals Long-range transport Contaminant transport Terrestrial mammals Persistent organic pollutants (POPs) Reindeer Pesticides Ecosystems
46. Contaminants in marine sediments, Svalbard 1997

Surface samples collected around Svalbard in 1997 have been analysed for total content of heavy metals, Polycyclic Aromatic Hydrocarbons (PAHs), Polychlorinated Biphenyls (PCBs) and a selection of pesticides. Sample localities have been selected to include areas not covered by previous investigations. Based on the data set and results from previous expeditions in the area, contamination levels as well as potential sources for the pollutants are discussed. The PAH levels for most stations are moderately elevated with a high contribution of aromatic hydrocarbons associated with petrogenic sources. Hence the dominant sources for the PAHs is most likely derived from petroleum seepage and or coal mining. Long-range transport of aromatics associated with anthropogenic input is a minor component of the observed PAH levels. The highest concentration of PAH is found in Storfjorden with a value higher than the elevated concentrations earlier reported from the south-eastern Storfjorden and over the Central Bank. The concentration levels of the metals arsenic, lead, chromium and nickel were moderately elevated. Because of sparse information on the natural geomorphology, background metal concentrations are not known for this area. Hence, no quantitative comparison of natural and anthropogenic inputs for metals can be made. However, the most dominant source is assumed to be natural and related to the geological conditions in the area. All PCB levels were low, suggesting a dominant influence of long-range transport of these compounds to the area. Pesticide data showed low contamination of all compounds and suggests a predominant long-range atmospheric source for these pollutants.

Pathways Sources Organochlorines PCBs Mapping Heavy metals PAHs Long-range transport Pollution sources Contaminant transport Petroleum hydrocarbons Persistent organic pollutants (POPs) Local pollution Sediments Pesticides Oil and Gas
47. Ellasjøen, Bear Island - A mass balance study of a highly contaminated Arctic area

In 1994, analyses of sediments and fish from Lake Ellasjøen on Bear Island revealed a surprising scenario. The analytical results indicated some of the highest values of the contaminants PCB and DDT in freshwater sediments and fish ever found in the Arctic. The 1994 results were based on limited amounts of samples. During 1996 and 1997 there were carried out new sampling and analyses of several samples. These results verify the results found in 1994. Since the POP-patterns found deviate considerably from the typical patterns expected for local contamination, no local source can be assumed to be responsible for the high POP values found. Thus, the questions that need to be addressed include the source of these contaminants, the transport pathways that deliver these contaminants to this site, total deposition and finally contaminant fate including biological uptake and effects. Previous investigations from the early 80’s on high volume air samples carried out at Bear Island revealed several long-range transport episodes from Eastern Europe. The overall objective of this project is to contribute significant new information to the understanding of contaminant pathways in the Arctic hydrosphere and to provide a better understanding of contaminant focusing in a sensitive polar environment. This will be accomplished through the development of a comprehensive mass balance study of the atmospheric loadings of PCBs and other contaminants to the Lake Ellasjøen watershed to determine the seasonal importance of atmospheric deposition on a remote polar island. Further, effort will be directed at assessing the relative importance of various source regions of contaminants to the island through an evaluation of contaminant signatures and back trajectories of pollution events.

Pathways Organochlorines PCBs Long-range transport Pollution sources Contaminant transport Modelling Arctic Persistent organic pollutants (POPs) Pesticides Atmosphere
48. Contaminants in marine sediments and organisms from harbour areas in Harstad, Tromsø, Hammerfest and Honningsvåg, northern Norway 1997 - 98.

Levels of selected contaminants have been determined in sediment, blue mussel, seeweed and fish from harbour areas in Harstad, Tromsø, Hammerfest and Honningsvåg in northern Norway. The following contaminants were included in the study: PAH, PCB, 5CB, HCB, OCS, HCH, DDT, DDE, DDD, TBT, Cd, Cu, Hg, Pb, Zn and Li. A few samples were also analysed for dioxines (PCDD and PCDF), non-ortho PCBs and PCN. The results were compared with the Norwegian State Pollution Control Authorities classification system for marine sediments (Molvær et al. 1997). Elevated (and in most cases very high) levels of most of the measured contaminants were found in all the investigated harbour areas.

Organochlorines PCBs Heavy metals Fish PAHs Petroleum hydrocarbons Persistent organic pollutants (POPs) Local pollution Dioxins/furans Sediments Pesticides Human intake
49. Transfer of organic pollutants from the abiotic environment to the lowest tropic levels of the ice associated food chain

The aim of the project is to detrmine the content of organic contaminants in sea ice (including dirty ice), sea water (particulate and dissolved), snow, ice algae and phytoplankton collected in the marginal ice zone of the Barents Sea and in Fram Strait, and to calculate bioconcentration factors from the abiotic compartments to the lowest trophic levels of the food chain. Silicate measurements were included in the Fram Strait as water mass tracer. The Barents Sea represents an area influence mainly by first year ice with sea ice formed in the area and or in the Kara Sea, and and strongly influenced by the inflowing two branches of water of Atlantic origin. Samples were collected on a transect along the ice edge and at two transects into the ice. The stations across the Fram Strait were taken in regions affected by water masses and sea ice from differents regions and age. In the western sector, the upper water column was influenced by the inflowing west Spitsbergen current of Atlantic origin and mainly with first-second year ice, while the easter station was influenced by outflowing water from the Arctic Ocean and multiyear sea ice of more eastern origin.

Pathways Organochlorines PCBs PAHs Long-range transport Pollution sources Sea ice Contaminant transport Exposure Arctic Persistent organic pollutants (POPs) Local pollution Ice cores Food webs Pesticides Ecosystems
50. Radioecological Investigation of Kola Fjord

To investigate the impacts of Russia's military and civilian nuclear activities in the Kola Bay and adjacent areas of the northwest Arctic coast of Russia.

Sources Organochlorines PCBs Heavy metals Fish Radioactivity Discharges Spatial trends Pollution sources Contaminant transport Radionuclides Modelling Exposure Arctic Persistent organic pollutants (POPs) Local pollution Geochemistry Food webs Sediments Pesticides Ecosystems
51. Environmental assessment of the Isfjorden complex, Svalbard

The project aims to carry out an environmental assessment of the marine environment close to the three main settlements in the Isfjorden complex; Barentsburg, Longyearbyen and Pyramiden. The study comprises analyses of sediment geochemistry and soft-bottom benthic fauna. Attention is given to distinguishing atmospheric transport of contaminants from those arising from local sources.

Biological effects Sources Pollution sources Contaminant transport Mining Primary recipient Radionuclides Modelling Dioxins/furans Sediments Pesticides Waste secondary recipient Biology Organochlorines PCBs Mapping Heavy metals PAHs Long-range transport Discharges Spatial trends Environmental management Petroleum hydrocarbons Biodiversity Arctic Persistent organic pollutants (POPs) Local pollution Data management Temporal trends Ecosystems
52. Bear Island - Food chain studies: The key to designing monitoring programmes for Arctic islands

Previous studies (Akvaplan-niva 1994 and 1996) on levels of POPs in limnic systems on Bear Island have shown that sediment and fish from a lake on the southern part of the island (Ellasjøen) have some of the highest levels of PCB and DDT that has been reported from Arctic areas. In a lake situated in the more central part of the island (Øyangen) levels are much lower, and in the same range as reported for lakes in Northern Norway and the Canadian Arctic. No local sources for contamination exist on Bear Island, and it is therefore likely that the contaminants are brought to the island with long-range atmospheric transport. The difference between the two investigated lakes on Bear Island may be due to differences in deposition of precipitation. This theory is currently being investigated through another project called: “Ellasjøen, Bear Island - A mass balance study of a high contaminated Arctic area." Another possible sources for contaminants to Ellasjøen can be the large colonies of seabirds that are situated close to the lake or use the lake for bathing. These seabirds may accumulate contaminants through their marine food chains and deposit guano in Ellasjøen and surrounding areas. Øyangen is much less influenced by seabirds than Ellasjøen. The aim of the present project is to map levels of selected persistent organic pollutants and study their biomagnification in freshwater and marine food chains at/near Bear Island. By linking the results from freshwater and marine food chains we aim to elucidate whether trophodynamics and interaction between marine and terrestrial food chains can be a natural mechanisms for biomagnification of POPs in specific geographic areas.

Organochlorines PCBs Fish Persistent organic pollutants (POPs) Seabirds Food webs Pesticides
53. Effects of metals and POPs on marine fish species

To clarify whether metals and/or POPs affect marine fish species - Atlantic cod (Gadus morhua) and plaice (Pleuronectes platessa)

Biological effects PAH-metabolites Organochlorines Pleuronectes platessa Heavy metals Fish EROD PAHs Long-range transport Gadus morhua ALA-D metallothionein
54. The P450 enzyme system of the Arctic charr as a biomarker of POP contamination in Arctic aquatic environments

Validate the hepatic P450 enzyme system as a biomarker of levels and effects of POPs in Arctic, aquatic environments, using the anadromous (sea-migratory) Arctic charr as an indicator species.

Biological effects Biomarker Organochlorines PCBs Fish PAHs Environmental management Petroleum hydrocarbons Exposure Persistent organic pollutants (POPs) Oil and Gas
55. The influence of body lipid status on PCB toxicokinetics in the anadromous Arctic charr (Salvelinus alpinus)

The objective is to study the relationship between natural seasonal variations in body lipid status of sea migrating Arctic charr and disposition (e.g. tissue distribution)of PCB, particularly in relation to the toxical potential of a certain body burden of PCB.

Biological effects Toxicokinetics Organochlorines PCBs Fish
56. Xenobiotic impact on Arctic charr: Nutritional modulation and physiological consequences

The objectives are to test the hypothesis that the tissue re-distribution of PCB are linked to the metabolic status of the Arctic charr and that the tissue re-distribution of PCB associated with fasting will decrease the overall performance characeristics of the Arctic charr.

Biological effects Organochlorines PCBs Fish Exposure Persistent organic pollutants (POPs)
57. Temporal trends of persistent organic pollutants and metals in Landlocked char

The objectives of this study are to determine temporal trends of persistent organic pollutants (POPs) and metals, especially mercury, in landlocked Arctic char in Char Lake and Resolute Lake by analysis of annual sample collections, to investigate factors influencing contaminant levels in landlocked char such as the influence of sampling time, water temperature and diet, and to provide this information on a timely basis to the community of Qausuittuq (Resolute). The rationale is that small lakes in the high arctic are replenished annually with snowmelt runoff and direct precipitation which represent significant fractions of their water budgets. Declining concentrations of POPs, or increasing levels of previously unstudied POPs, in air and precipitation should be reflected relatively quickly in changes in levels in food webs and top predator fishes, compared to the vast marine environment. We know this to be the case from the sedimentary record of POPs and mercury in small arctic lakes. This project collects landlocked arctic char from lakes near Resolute annually and analyses them for mercury, a suite of other metals as well as persistent organic pollutants (PCBs, organochlorine pesticides including toxaphene). Results will be compared over time. The first samples were collected from Char and Resolute Lakes in 1992/93. The next set were collected in 1997 and annually since then. Char are being collected from several lakes in the area because of limited sample numbers in some lakes and the possibility of local influences. Samples are also being archived for future analyses.

Organochlorines PCBs landlocked arctic char mercury Heavy metals Persistent organic pollutants (POPs) Temporal trends
58. Temporal trends of persistent organic pollutants and metals in ringed seals from the Canadian Arctic

The objective of this project is to study long term temporal trends of persistent organic pollutants and mercury in ringed seals from the Canadian arctic. The project rationale is that there are previous results for POPs and mercury in ringed seal tissues for many locations. Furthermore there may be regional differences in temporal trends due to geographical differences in POPs and mercury in marine waters and food webs within the Canadian arctic. It is relatively cost efficient to return to the same locations for additional samples using the same sampling and anlaysis protocols are were used in previous studies (see AMAP and Canadian Assessment Reports). Samples are being collected with the help of hunters and trappers organizations in each community. During 2000-01 samples are being collected at Resolute, Arctic Bay and Pond Inlet. The study will also analyse samples collected recently (1998/99) from Pangnirtung, Arviat and Grise Fiord. Results will be compared with previous data which the Principal Investigator generated in the 1980's and early 1990's. Preliminary results will be available in mid-2001.

Organochlorines PCBs mercury Persistent organic pollutants (POPs) Temporal trends ringed seals Marine mammals
59. Biological core programme

The major aim in AMAP is to monitor the levels of anthropogenic contaminants in all major compartments of the Arctic environment, and assess the environmental conditions in the area. This core programme will provide the Danish/Greenlandic authorities with data which make it possible to take part in the international AMAP programme under the Arctic Council. In order to monitor the levels of anthropogenic pollutants, samples will be collected and analysed. The measured components will include heavy metals and persistent organic pollutants in order to allow for spatial and temporal trends in Arctic biota. The program has taken in consideration the recommended importance of persistent organic pollutants and mercury and the importance of the marine food chain. The core program focuses on areas with high population density or areas with high levels of pollutants in the environment.

Organochlorines PCBs Heavy metals Fish Radioactivity PAHs Spatial trends Environmental management Caribou Terrestrial mammals Arctic Persistent organic pollutants (POPs) Seabirds Reindeer Dioxins/furans Sediments Pesticides Temporal trends Marine mammals
60. Effects of prenatal exposure to OCs and mercury on the immune system of Inuit infants (year 3)

This study investigates possible detrimental effects on the immune system of Inuit infants which may be induced by prenatal and postnatal (breast feeding) exposure to persistent environmental contaminants such as organochlorine compounds. These substances accumulate in the body of Inuit women in part due to their consumption of sea mammal fat and can be transferred to the foetus during pregnacy and to the infant during breast feeding. Immune system function will be evaluated using several parameters: 1) the level of antibody produced by the infant following Haemophilus influenza immunization; 2) the level of proteins which protect the infant against bacterial infections (complement system) before its immune system is fully developed; and 3) the level of chemical messengers (cytokines) which enable the various cells of the immune system to communicate with each other, thereby maintaining its proper function and assuring the protection of the infant against bacteria, parasitic and viral infections.

Organochlorines Inuit infants mercury vitamin A prenatal exposure assessment Human health