Projects/Activities

The full list of projects contains the entire database hosted on this portal, across the available directories. The projects and activities (across all directories/catalogs) are also available by country of origin, by geographical region, or by directory.

Displaying: 1 - 3 of 3
1. Greenland ice sheet meltwater and sediment discharge monitoring at Watson River, Greenland

Ice sheet meltwater and sediment discharge is measured at only very few sites in Greenland. The measurements provide detailed insights into ice sheet surface melting, englacial meltwater routing, subglacial erosion, etc., and their importance increase with the lengthening of the time series. Monitoring was initiated by IGN (Copenhagen University) in 2006, and taken over by the Geological Survey of Denmark and Greenland in 2014. Data are available through the Programme for Monitoring of the Greenland Ice Sheet (www.PROMICE.dk).

ablation arctic climate Climate variability Discharges Greenland ice sheet marine and freshwater sediments melt surface heat and mass balance
2. Programme for Monitoring of the Greenland Ice Sheet (PROMICE)

The main objective is to quantify the annual mass loss of the Greenland ice sheet, track changes in the extent of local glaciers and ice caps, and track changes in the position of the ice-sheet margin. Network type: - Observing and modelling the ice-sheet surface-mass balance - Quantifying the mass loss caused by iceberg calving - Monitoring the change of glaciers and ice caps in Greenland - Outlook

ablation Greenland Greenland ice sheet Ice ice dynamics
3. Program for Arctic Regional Climate Assessment (PARCA)

The Program for Arctic Regional Climate Assessment (PARCA) was formally initiated in 1995 by combining into one coordinated program various investigations associated with efforts, started in 1991, to assess whether airborne laser altimetry could be applied to measure ice-sheet thickness changes. It has the prime goal of measuring and understanding the mass balance of the Greenland ice sheet, with a view to assessing its present and possible future impact on sea level. It includes: · Airborne laser-altimetry surveys along precise repeat tracks across all major ice drainage basins, in order to measure changes in ice-surface elevation. · Ice thickness measurements along the same flight lines. · Shallow ice cores at many locations to infer snow-accumulation rates and their spatial and interannual variability, recent climate history, and atmospheric chemistry. · Estimating snow-accumulation rates from atmospheric model diagnosis of precipitation rates from winds and moisture amounts given by European Centre for Medium-Range Weather Forecasts (ECMWF) operational analyses. · Surface-based measurements of ice motion at 30-km intervals approximately along the 2000-m contour completely around the ice sheet, in order to calculate total ice discharge for comparison with total snow accumulation, and thus to infer the mass balance of most of the ice sheet. · Local measurements of ice thickness changes in shallow drill holes ("dh/dt" sites in Figure 1). · Investigations of individual glaciers and ice streams responsible for much of the outflow from the ice sheet. · Monitoring of surface characteristics of the ice sheet using satellite radar altimetry, Synthetic Aperture Radar (SAR), passive-microwave, scatterometer and visible and infrared data. · Investigations of surface energy balance and factors affecting snow accumulation and surface ablation. · Continuous monitoring of crustal motion using global positioning system (GPS) receivers at coastal sites.

ablation Glaciers regional climate mass balance Climate variability accumulation remote sensing Climate change Ice Ice sheets Ice cores glaciology Greenland ice sheet SEARCH