The full list of projects contains the entire database hosted on this portal, across the available directories. The projects and activities (across all directories/catalogs) are also available by country of origin, by geographical region, or by directory.
Monitoring the state of Lake Inarijärvi fish populations, fishing pressure and fish stocking success. Monitoring program is designed for detecting impact of water level regulation and controlled by the ministry of agriculture and forestry.
Tornio River has endemic Baltic salmon and sea trout populations. Their monitoring is based on international obligations to secure biodiversity. The project comprises of long term data of the species’ juvenile production and amounts of migrant individuals.
Important progress has been made in recent decades to describe and understand how arctic terrestrial vertebrate interact, especially concerning predator-prey interactions. Indirect interactions between different prey species modulated by shared predators (e.g. Arctic fox) are believed to have important impacts on the structure and/or dynamics of some communities. Yet, our understanding of these types of interactions is still fragmentary. To fill that gap, we will build on ongoing projects exploring related questions in Canada (Marie-Andrée Giroux, Nicolas Lecomte, Joël Bêty) and Greenland (Olivier Gilg, Niels M. Schmidt), while taking advantage of existing networks (ADSN in North America and “Interactions” program in Greenland and Eurasia). The aim of the project is to promote the implementation of several common protocols that will (1) improve each collaborator’s knowledge at the site level and, more importantly, that will (2) be merged across sites and years to improve our understanding of the functioning and the influence of indirect interactions on arctic vertebrate communities in general.
Five types of data have been identified (by the 5 initiators of the project already mentioned above) as being mandatories to answer questions related to this topic. These data sets will be collected using 5 specific protocols described in the following chapters:
The possibility of restoring the salmon stocks in the Tuloma system is assessed by collecting background information on the river system: present fish fauna, habitat quality, migratory routes etc. Planning the restoration including technical and management aspects is under way.
Monitoring of the salmon stocksof the Teno and Näätämö river systems is based on long term data collection on juvenile salmon production, biological characteristics of the spawning stock, origin of salmon (wild/reared) and statistics on fishery and catches. Information on other fish species than salmon is also available.
Polar bears are at the top of the arctic marine food chain. Owing to the high lipid content of their diet, polar bears appear particularly prone to bioaccumulate organochlorines. Polar bears from East Greenland and Svalbard have higher contaminant levels than polar bears elsewhere in the Arctic. Levels of PCBs in these areas might negatively affect reproduction and survival. So far more than 130 polar bear samples have been collected since 1999. These samples are being analysed for organochlorines and pathological effects.
The ZERO database contains all validated data from the Zackenberg Ecological Research Operations Basic Programmes (ClimateBasis, GeoBasis, BioBasis and MarinBasis). The purpose of the project is to run and update the database with new validated data after each succesfull field season. Data will be available for the public through the Zackenberg homepage linking to the NERI database. The yearly update is dependent on that each Basis programme delivers validated data in the proscribed format.
Organochlorines (OCs) concentrate through the arctic marine food webs and are stored in the adipose tissue due to their high lipophilic and persistent characteristics. The polar bears receive high doses of POPS through their diet and a controlled experimt was need to resolve effect on the immune system and effects on internal organs. Such a controlled experiment on sledge dogs as a replacement test organism for the polar bear was conducted from 2004-2006 to investigate dose-response effects.
The activity in 2004 will be devoted to two projects: First, we will perform banding of breeding adult Kittiwakes in the Kongsfjord area. The Kittiwakes will in addition to standard metal rings be equipped with a colour-ring with a combination of letters and numbers, making identification at a distance easier. This banding programme was initiated in 2003 and will in the coming years be used to calculate local survival rates of the Kittiwakes breeding the Kongsfjord area. Secondly, we intend to place a number of breeding boxes for Snow Buntings in the Ny-Ålesund area. In the coming years this will make access to breeding adults and nestlings easier enabling physiological studies. These studies will focus on various aspects of metabolism and energetics of the breeding population of Snow Bunting on Svalbard, and we also want to compare the physiology of the Svalbard population with the breeding populations on ’mainland’ Norway.
In a context of global change, arctic ecosystems are exposed to deep modifications not only of the biology and ecology of endemic species but also of the interactions they may have with an increasing number of introduced species. This project attempts to assess in Svalbard, the impacts of global changes on aphids. These phytophagous insects are particularly relevant organisms for studies on the effects of global warming and biological invasion because 1) of their extreme sensitivity to micro- and macro- changes due to their spectacular rate of increase and phenotypic plasticity and 2) of their colonizing capacity conferred by their parthenogenetic mode of reproduction and their dispersal potential
A co-operative project between France and Norway is proposed to study the physiological mechanisms (hormones and metabolic rate) involved in the regulation of parental effort (brood size) in an Arctic-breeding seabird, the kittiwake Rissa tridactyla. This project will be carried out at Kongsfjorden (Ny Ålesund, Svalbard) which constitutes one the northernmost (79° N) breeding site of the species. The main goal of this project is to understand the reasons of the very poor productivity of the species in this high-arctic area (only one chick/pair/year compared to 2-3 chicks/ pair/year in more temperate areas). To do so, we will concurrently study the metabolic cost of chick rearing and the metabolic cost of foraging. To test whether parent kittiwakes are apparently unable to rear more than one chick, we will manipulate brood size and will measure its consequences on basal metabolic rate (BMR) and foraging activity. We will experimentally manipulate the brood size by swapping chicks between nests shortly after hatching. Parent birds of the different experimental groups will be captured, weighted and a small blood sample (500 µL) will be taken for thyroid hormones. BMR will be estimated through thyroïd hormones (Chastel et al. 2003, J. Avian Biol. 34: 298-306), a method that reduces handling time imposed by the use of a respirometer, whereas activity at sea will be estimated using miniature activity recorders (Daunt et al., 2002 Mar. Ecol. Prog. Ser.245 : 239-247, Tremblay et al. 2003, J. Exp. Biol. 206: 1929-1940). Nests of the different groups (12 nests with 2 chicks and 12 nest with 1 chick) will be observed during 2 weeks after what parent birds will be recaptured, and bled again for T3 assay. On an other group of birds (N=10), we will calibrate these miniature activity recorders (N=10, weight:5 g) by observing the activities (rest, brooding, flying, etc..) of the instrumented birds in the colony. Food samples (N=12) will be collected from parent birds during capture and recapture sessions (kittiwakes spontaneously regurgitate food when handled). Breeding adults and chicks will be maked with plastic rings that allow identification from a distance.
This project's goal is to experimentally study strict monogamy in a panarctic seagull, the black-legged kittiwake, in Alaska. It studies mate choice (which is crucial because no mixed strategy is used) in relation to indivdual quality, fitness and sexual conflict in strictly monogamous species. It is rooted in a detailed knowledge of the species’ biology and the merging of three teams (French, Austiran and Alaskan) with long-term experience researching kittiwakes. It uses the unique experimental Alaskan setting for wild populations.
The project as a whole consists of a number of sub-projects which are: a) Is female coloration a signal of quality? b) Do males conduct post-spawning mate choice through differential filial cannibalism? c)Do female preferences for male size change throughout the season? d)Do female common gobies compete for access to high-quality males? e)Are male reproductive decisions influenced by prior expectation of female quality? f)How is male-male competition over nest sites influenced by resource holding potential and resource value? g)How do parasites influence mate preferences in two-spotted gobies?
To be completed.
To evaluate temporal variation in arctic fox numbers and their food resourses in the Kongsfjorden area. The number of foxes captured per 100 trap-days are used as an index of fox density termed "Fox Capture Index". The observations of denning activity i.e. observation of number of arctic fox litters and litter size at den are termed "Fox Den Index" as a second index of fox abundance. A third index is termed "Fox Observation Index". This index is based on both observations of adult foxes seen away from breeding dens pr 100 h field work and reports on request from scientists and local people on observations of adult foxes during summer. In addition, reports on observation of fox tracks in the study area were collected in 1990-2001 as a fourth index, which were called "Fox Track Index". The field census are conducted for 10 days starting at the end of June. All dead foxes in the area should be collected.
Observation how UV-radiation affects recruitment on hard substrate in the upper sublitoral zone.
The overall project outlined in this proposal represents a series of interrelated studies designed to answer questions regarding the effects of disturbance on distribution and abundance of waterfowl and marine birds. The primary studies (i.e., aerial surveys) are directly related to the objectives identified in the Minerals Management Service (MMS) Statement-of-work regarding Monitoring Beaufort Sea Waterfowl and Marine Birds near the Prudhoe Bay Oil Field, Alaska. Additionally, we plan to include the ‘optional’ studies on eiders using off-shore barrier island habitats. Finally, we propose to conduct ground based studies designed to enhance and expand the interpretation of the aerial surveys. The specific objectives of this study are: 1. Monitor Long-tailed Duck and other species within and among industrial and control areas in a manner that will allow comparison with earlier aerial surveys using Johnson and Gazeys’ (1992) study design. a) Perform replicate aerial surveys of five previously established transects based on existing protocol (OCS-MMS 92-0060). b) Expand the area from original surveys to include near-shore areas along Beaufort Sea coastline between the original “industrial” (Jones-Return Islands) and “control” (Stockton-Maguire-Flaxman Islands) areas. c) Define the range of variation for area waterfowl and marine bird populations. Correlate this variation with environmental factors and oil and gas exploration, development, and production activities. 2. Expand aerial monitoring approximately 50 km offshore. Surveys will target Spectacled, Common and King eiders. The goal is to sample areas potentially impacted by oil spills from the Liberty, Northstar, and/or Sandpiper Units. 3. Develop a monitoring protocol for birds breeding on barrier islands, particularly Common Eiders. These data will be compared to historic data summarized by Schamel (1977) and Moitoret (1998). 4. Examine relationships between life-history parameters (e.g., fidelity, annual survival, productivity) and ranges of variation in Long-tailed Ducks and Common Eider distribution and abundance to enhance interpretation of cross-seasonal effects of disturbance. That is, the combination of aerial and ground based work has the potential to both document changes in abundance/distribution and describe those changes in terms of movements of marked individuals. Parameters will be examined in relation to disturbance using the two-tiered approach developed by Johnson and Gazey (1992). 5. Recommend cost-effective and feasible options for future monitoring programs to evaluate numbers and species of birds potentially impacted by oil spills involving ice-free and ice periods in both inshore and offshore waters.
In order to manage populations of migratory geese a better understanding of the mechanisms that determine the size of these populations is needed. The objective of this project is to investigate such mechanisms, within the framework of the entire population of Dark-bellied Brent Geese, that winters in western Europe, and breeds in northern Siberia. The final objective of this project is to help predict future numbers of geese that will winter in western Europe in order to be able to forecast levels of agricultural damage caused by geese. Though hunting is an important factor determining the size of most goose populations, this is not a focal point in this project. Therefore this project focuses on a virtually non-hunted subspecies, viz. the Dark-bellied Brent Goose. Research activities Field work has been carried out in the Pyasina-delta in northern Taymyr, Russia during six consecutive summers from 1990 - 1995 in order to cover two complete lemming cycles. The project focuses the one hand on natural predators (like arctic foxes, Snowy Owls, Glaucous Gulls and Herring Gulls, and even Polar Bears) as a regulatory mechanism for the Dark-bellied Brent Geese, a virtually non-hunted subspecies. Lemming cycles have an important effect on the abundance and behaviour of most of these predators, and measuring lemming density forms an integral part of this study. On the other hand weather conditions, as well as the body condition of the geese themselves are being studied, because those factors are in themselves extremely important predictors of breeding success.
Large numbers of birds breed each summer on the tundra of the northern hemisphere. Two prominent groups in the Arctic bird fauna are waders and waterfowl (ducks, geese and swans). Breeding, which is an energetically costly activity (Drent & Daan 1980), is especially costly in the high Arctic. This is mainly due to low temperatures and high wind speeds in an open landscape (Piersma & Morrison 1994, Wiersma & Piersma 1994). In addition, the summer period is very short. This leaves little time for necessary pre-breeding, breeding and post-breeding activities. Thus, costs are high and available time is short. In order to reach their breeding grounds, arctic birds have to migrate over vast distances between their Arctic breeding sites and temperate or tropical wintering grounds. Migration is also an energetically costly event. This generally high rate of living puts high demands on the birds and we may expect the birds to have evolved a wide range of physiological and behavioural adaptations. Given the inaccessibility of most tundra areas and the necessity of relatively advanced techniques, ecological energetic studies of wader and waterfowl are relatively scarce (with the notable exception of tundra breeding Nearctic geese). With this project we aim at measuring and describing some important energy turnover processes of waders and waterfowl during the short and hectic Arctic summer and to evaluate them in an evolutionary context. We will pay particular attention to the importance of energy and nutrient stores with which the birds arrive at the breeding grounds for egg production, energy turnover of breeding birds in relation to species and microclimate, and the fat deposition and basal metabolism of birds preparing for autumn migration. The project is partly a continuation of work carried out during the Swedish-Russian Tundra Ecology Expedition 1994 (TE-94). Research activities: Capital vs. income breeders Since the favourable season is short for Arctic breeding birds, they are hard pressed to start egg laying immediately after arrival at the breeding grounds. However, upon arrival food availability is often low. It is thought that female birds planning to start a family on the tundra are forced to produce a clutch using, at least to some degree, body reserves accumulated prior to or during their migratory journey. Birds using such a strategy are called capital breeders, in contrast to income breeders' that only use resources obtained during the reproductive period (Drent & Daan 1980). We seek to investigate how commonly the capital breeder strategy is on the Nearctic tundra and how its use varies with: - Species: large species are expected to be more dependent on this - Strategy as their breeding seasons are longer and they are thus more time stressed. - Site: birds at sites where circumstances allow an early start of the breeding season may not be equally dependent on capital breeding than birds using late sites. - Timing: early arriving birds are more pressed to use the capital breeding strategy than late arriving birds, the latter being able to produce eggs from the food available upon arrival. The different potential food sources to birds often have distinct isotopic ratios of C12/C13 and N14/N15 depending on environment and metabolic characteristics. Isotopic ratios of C and N can therefore serve as a kind of fingerprint for these food stuffs. These specific ratios will ultimately also be reflected in the isotopic composition of the consumers tissues; especially with regard to C12/C13 ratios (Hobson & Clark 1992). Distinct differences may therefore also be expected in tissue isotope ratios of newly hatched young from capital and non-capital breeders. Such differences may also appear within nests in case the female has used a mixed strategy. Although in developing tissues these differences may rapidly fade away, isotope differences between young may be fixed in down feathers already present at hatching. Comparing the isotope ratios in down samples within broods with isotope ratios in potential food sources at the breeding ground thus provides a clue to the extend the mother made use of the capital breeding strategy. We will collect down, feathers and blood from all birds trapped. We will concentrate on waders, yet, also waterfowl are of high interest (although the chances to trap birds are smaller). Of highest priority will be down from chicks and blood from parent birds. In likely foraging areas of parents and chicks that we have sampled, we will collect insects and plants and other possible food sources. At the NIOO the samples will be analysed for C12/C13 and N14/N15 ratios using mass spectrometry. The fact that we will visit many different habitats with different climate, foraging conditions and phenology is a major prerequisite for successfully conducting this part of the project. Energy turnover of brooding birds The few available measurements of daily energy expenditure (DEE) of incubating waders in tundra regions, using the doubly labelled water (DLW) method, have shown that breeding in the High Arctic is indeed costly (Piersma & Morrison 1994, Piersma et al. unpublished data from Siberia). The high cost stems from the combined effects of low temperatures and high wind speeds in an open landscape, but may also be affected by the birds own intense foraging activities. However, the measurements that have become available up till now do not cover the whole "climate space" that arctic breeding waders encounter, due to the bias in study sites and the particularities of weather conditions during the few studies that have been carried out. We would like to extend the series of measurements using DLW in incubating waders of more species than hitherto available and under more environmental conditions. Field measurements of DEE involve initial capture of a bird on the nest, loading it with DLW and recapturing the bird after a certain period of time, usually 24-48 hours. There is room for improvement over the earlier studies in monitoring the loaded birds activity budget (using transponders, small radiotags and/or nest/egg temperature recorders) and in assaying the birds physiological status. Apart from mass and size variable, birds could probably be assayed for the thickness of the breast muscle (a heat generating part of the body) and the size of the stomach (as an indicator of the digestive apparatus) using ultrasound. These techniques are under development at NIOZ and the University of Groningen at the moment. Equally, body composition in terms of fat and lean components could be estimated from dilution factors after quantitative DLW injections. It is crucial to simultaneously measure the meteorological variables air temperature, wind speed and global solar radiation, and hence a weather station has to be brought to the study sites to this effect. Fat deposition and basal metabolism of birds preparing for autumn migration Waders need high-performing bodies to cope with their energetically high rate of living. This is reflected in their basal metabolic rate (BMR). The BMR of an animal is the energy it spends at rest (i.e., at night for day-active animals), in thermoneutral conditions, without processing food, and when it is not involved in productive activities like reproduction, moult or growth. The BMR of a bird may be compared with the fuel consumption of a car engine that is running idle. A Formula-One car, that operates at an incredibly high rate also has a high cost of running idle. A standard car with a less impressive engine takes less energy to keep running. As the cost of running idle reflects the potential power of an engine, the BMR reflects the potential rate of work of an animal body. Waders have comparatively high BMR compared to other non-passerine birds (Kersten & Piersma 1987). Moreover, studies of captive Knots have shown that they vary their BMR over the year (Piersma et al. 1995). In addition, waders trapped during the first part of their autumn migration in Arctic Eurasia were found to have higher BMR than their conspecifics at tropical wintering grounds in Africa (Kersten et al. in press, Lindström in press a). This all suggests that waders can adjust the size of their engine which makes sense, since the best solution would be to have a strong engine when circumstances so demand, and a smaller engine during more relaxed parts of the year (for example at wintering grounds in Africa; Klaassen et al. 1990). Although we are actually most interested in the long-term maximum rate of energy expenditure as a measure of adaptations to a high rate of living, this is very difficult to measure, and especially so in a comparable way. Instead, the BMR, which is supposed to reflect the maximum energy turnover potential, is fairly easy to measure, and figures from different investigations can be compared. During TE-94, 24 juvenile waders of five different species were measured for their BMR in a respirometer (Lindström in press a). We want to continue this work by including birds of new species, and of the same species but from another breeding area. Juvenile birds will be caught during the first parts of the autumn migration (mainly August) in portable and walk-in traps. They are then brought to the ship where they will be measured in the respirometer. The BMR values will be compared to those obtained during TE-94 and with data from the migration and the wintering grounds in America and Europe to look for inter- and intra-specific patterns. Whereas it is fairly well known that many (most ?) wader species put on huge energy reserves prior to migration to the Arctic, almost nothing is known about the size of reserves carried by waders prior to departure from the Arctic. This is necessary to know in order to understand the migration strategies adopted (Alerstam & Lindström 1990) and when analysing migration routes. During TE-94 almost 300 juvenile waders were trapped during August, most of them being Little Stints Calidris minuta. It was revealed that also when migrating from the Arctic, substantial energy reserves were put on (Lindström in press b). We now want to collect corresponding data from the Nearctic. Whereas much is known about the size of energy reserves of migration waders further south in America (for example, McNeil & Cadieux 1972, Thompson 1974, Johnson et al. 1989, Driedzic et al. 1993), we know of no such data from the Nearctic region.
International cooperative research program (field work in 1992-1996) on Bewick's Swans, on ecological limitations in the annual cycle, mainly during periods of high energy expenditure, i.e. breeding and migration. Relates to feeding ecology (both terrestrial and aquatic (pondweed tubers) vegetation, annual variation in climatic conditions. Aims at: 1. understanding limiting factors for population size (production of young and survival) 2. understanding migratory behaviour in this large species 3. protecting crucial areas for breeding, moulting and migrating for this vulnerable swan population Research activities: - Field expeditions (2-5 months) to the Arctic, covering the entire breeding season, including moult and pre-migratory fattening - Running a ringing project with over 1,000 individually marked birds - Data analysis and publications