Projects/Activities

The full list of projects contains the entire database hosted on this portal, across the available directories. The projects and activities (across all directories/catalogs) are also available by country of origin, by geographical region, or by directory.

Displaying: 81 - 99 of 99
81. Temporal assessment of Arctic pollution of mercury and persistent organic pollutants using lake sediments

The general objective is to assess time trends and deposition loads of mercury and persistent organic pollutants from long-range atmospheric transport in Arctic environments (Greenland and north Swedish mountains) using lake sediments. The specific aims are: 1. Mercury - Study pre-industrial and industrial temporal changes in Hg concentrations in sediment records of remote lakes in Greenland and north Swedish mountains. - Address the hypothesis of 'cold condensation' (the progressive re-volatilization in relatively warm locations and subsequent condensation and deposition in cooler environments) of mercury, using a series of lake sediment cores along climate gradients: in Greenland from the inland ice sheet towards the coast and in the Swedish mountains from high altitudes down to the boreal forest. 2. POPs - Make a screening to establish which persistent organic pollutants are present in recent lake sediments in remote sites in Greenland and the north Swedish mountains. Besides PCBs, HCH, DDT and other pesticides, there are new environmental threats such as brominated flame retardants, such as PDBEs, which are of particular interest. The increasing use of PBDE and other brominated compounds may lead to increasing concentrations in the Arctic environment. However, very little is known about the levels of PBDEs as well as other POPs in sediments from the Arctic. - Analyse test series of selected POPs using a lake sediment core to assess temporal trends and a number of surface sediment samples from different lakes to assess spatial variability in concentrations and cumulative fluxes of POPs in Greenland and Swedish mountain lakes. - The main purpose of this pilot study of POPs is to determine the concentrations of selected POPs in sediments from Greenland and the northern Swedish mountains and to assess how useful lake sediments are for studying temporal and spatial pollution loads of POPs in Arctic environments.

Heavy metals Long-range transport Spatial trends Pollution sources Contaminant transport Arctic Persistent organic pollutants (POPs) Geochemistry Temporal trends
82. Temporal trends of persistent organic pollutants and metals in Landlocked char

The objectives of this study are to determine temporal trends of persistent organic pollutants (POPs) and metals, especially mercury, in landlocked Arctic char in Char Lake and Resolute Lake by analysis of annual sample collections, to investigate factors influencing contaminant levels in landlocked char such as the influence of sampling time, water temperature and diet, and to provide this information on a timely basis to the community of Qausuittuq (Resolute). The rationale is that small lakes in the high arctic are replenished annually with snowmelt runoff and direct precipitation which represent significant fractions of their water budgets. Declining concentrations of POPs, or increasing levels of previously unstudied POPs, in air and precipitation should be reflected relatively quickly in changes in levels in food webs and top predator fishes, compared to the vast marine environment. We know this to be the case from the sedimentary record of POPs and mercury in small arctic lakes. This project collects landlocked arctic char from lakes near Resolute annually and analyses them for mercury, a suite of other metals as well as persistent organic pollutants (PCBs, organochlorine pesticides including toxaphene). Results will be compared over time. The first samples were collected from Char and Resolute Lakes in 1992/93. The next set were collected in 1997 and annually since then. Char are being collected from several lakes in the area because of limited sample numbers in some lakes and the possibility of local influences. Samples are also being archived for future analyses.

Organochlorines PCBs landlocked arctic char mercury Heavy metals Persistent organic pollutants (POPs) Temporal trends
83. Biological core programme

The major aim in AMAP is to monitor the levels of anthropogenic contaminants in all major compartments of the Arctic environment, and assess the environmental conditions in the area. This core programme will provide the Danish/Greenlandic authorities with data which make it possible to take part in the international AMAP programme under the Arctic Council. In order to monitor the levels of anthropogenic pollutants, samples will be collected and analysed. The measured components will include heavy metals and persistent organic pollutants in order to allow for spatial and temporal trends in Arctic biota. The program has taken in consideration the recommended importance of persistent organic pollutants and mercury and the importance of the marine food chain. The core program focuses on areas with high population density or areas with high levels of pollutants in the environment.

Organochlorines PCBs Heavy metals Fish Radioactivity PAHs Spatial trends Environmental management Caribou Terrestrial mammals Arctic Persistent organic pollutants (POPs) Seabirds Reindeer Dioxins/furans Sediments Pesticides Temporal trends Marine mammals
84. Sociodemographic factors influencing nutrition and contaminant exposure in Nunavik

Risk determination for traditional food should consider the potential risks from exposure to contaminants and the sociocultural, nutritional, economic and spiritual benefits associated with traditional food. Factors which influence Inuit food choices should be further analyzed to add precision to the evaluation of risks and benefits of traditional food consumption. The data of the Nutrition Santé Québec Survey are a potential source for this type of analysis since data are available and are representative of the entire region of Nunavik. The proposed work consists of more detailed analysis of the existing data on food intake among the Inuit of Nunavik collected in 1992 during the Santé Québec Health Survey and to extend our analyses to contaminant intakes. Intakes (mean and median) of traditional and market foods, nutrients and contaminants will be calculated according to the makeup/structure of households, the level of education, the level of household income and coastal place of residence. Intakes will also calculated according to the social assistance status of Inuit. Among Inuit depending on social assistance, comparisons of food, nutrient and contaminant intakes according to the time of the month in which the survey took place will be examined. Statistical comparisons of food intakes will also be done between Inuit who stated having lacked food in the month prior to the survey and those who did not. Nutrient intakes will be compared with daily recommended nutrient intakes (RNI) based on nutritional recommendations issued by Health Canada. More detailed and reliable information regarding sociodemographic factors affecting food intake, nutritional status and contaminant exposure among Inuit will help to orient public health authorities in the promotion of health through traditional food consumption.

Populations PCBs Heavy metals Indigenous people Long-range transport Exposure Persistent organic pollutants (POPs) Data management Diet Human health Human intake
85. Mercury in Salluit : phase 2 : Effects of mercury on oxydative status and sensorimotor functions

Among all contaminants present in different aquatic ecosystems in Canada, methylmercury (MeHg) is a major source of concern for public health. Currently, it is difficult to reliably determine the threshold of MeHg concentration at which functional changes occur. On the other hand, it is well known that chronic MeHg exposure is very harmful for the nervous system. Oxidative reactions appear to be of central importance to mercury toxicity. Therefore, it is important and urgent to determine with precision the minimal dose at which oxidative stress and neurotoxic effects can be identified since some studies suggest that MeHg toxicity can be detected at level far below the minimal exposure level proposed by the World Health Organization. The main goal of this project is to investigate the effects of mercury on sensorimotor functions in the population of Salluit. We will examine the relationship between the level of MeHg and sensorimotor performance. Afterwards, specific recommendations based on quantitative evidence will be made to the concerned populations so as to diminish long-term risk on health.

Biological effects Populations Heavy metals Fish Indigenous people Exposure Diet Temporal trends Human health Human intake
86. Yukon Traditional Foods Monitoring Program

Short Term i) to provide additional information for use in updating health advisories. Long Term i)to investigate the fate and effects of contaminant deposition and transport to the Yukon, allowing Northerners to better manage the issue of contaminants. ii)to determine levels of contaminants for use in long term trend monitoring.

Biological effects Pollution sources Contaminant transport Caribou Dioxins/furans Pesticides Human intake Pathways Biology Populations Organochlorines PCBs Heavy metals Fish Indigenous people PAHs Long-range transport Spatial trends Petroleum hydrocarbons Terrestrial mammals Persistent organic pollutants (POPs) Local pollution Food webs Data management Diet Temporal trends Human health Ecosystems
87. An investigation of factors affecting high mercury concentrations in predatory fish in the Mackenzie River Basin.

1. Continue to investigate spatial and temporal patterns in mercury concentrations in fish in lakes in the Mackenzie River Basin with a focus on predatory fish in smaller lakes near Fort Simpson but also including Great Bear Lake 2. Assess temporal trends in mercury concentrations and influencing factors, e.g., climate change 3. Conduct sediment core studies as opportunities allow to characterize long-term trends in mercury deposition and productivity 4. Integrate the findings of this study with our mercury trend monitoring in Great Slave Lake and the western provinces.

Pathways Sources Biology Organochlorines Mackenzie River Basin Soils Catchment studies Mercury Heavy metals Fish Indigenous people Pollution sources Environmental management Contaminant transport Food webs Sediments Atmosphere Human health Ecosystems
88. Transplacental Exposure to PCBs and Infant Development/Human Exposure Assessment.

The main purpose of this research is to examine the consequences of in utero exposure to PCBs on Inuit infants, from birth to 11 months of age. Of particular interest is the impact of PCBs and mercury exposure on newborn’s thyroid hormones, physical growth, physical and central nervous system maturity, on infant’s overall health, mental, psychomotor and neurobehavioral development, and on functional and neural impairment in the domains of visual and spatial information processing. The proposed project is designed to replicate and extend previous findings by studying a more highly exposed cohort of infant, and using new infant assessment paradigms that have been linked to specific brain regions and neural pathways and, therefore, have a potential to provide information regarding possible mechanisms of action. The second objective of this research is to document the exposure to heavy metals, organochlorines and polyunsaturated fatty acids of newborns from selected communities in Nunavik. This ongoing effect study provides the opportunity to perform long time trend analysis of human exposure (data available for same communities since 1993).

Organochlorines PCBs Heavy metals Indigenous people Exposure Persistent organic pollutants (POPs) Reproduction Temporal trends Human health
89. Follow-up of preschool aged children exposed to PCBs and mercury through fish and marine mammal consumption.

The purpose of this research is to examine the long term consequences of prenatal exposure to PCBs and MeHg. This project is designed to study domains of effects overlooked in most of the previous studies. Of particular interest is the impact of exposure on neurophysiological and neurological endpoints that could be related to learning difficulties and disabilities. This study will support the health risk assessment process by providing dose-effect analysis for the neurophysiological and neurological domains of effects of preschool age children from Nunavik (Canada). The total sample will comprise 100 Nunavik Inuit children aged 5-6years. The following exclusion criteria will be applied: Apgar below 5 at 5 minutes of life, evidence of birth trauma, less than 37 weeks of gestation and less than 2500 grams at birth, congenital or chromosomal anomalies, epilepsy, significant disease history, major neurological impairment, fetal alcohol syndrome, presence of facial dysmorphologies associated with fetal alcohol effects.

Organochlorines PCBs Heavy metals Persistent organic pollutants (POPs) Human health
90. AMAP Human Health Programme for Greenland 2000

Analysis of POP and heavy metals, in men and women (pregnant and non-pregnant), time and spatial trends, lifestyle factors, diet and smoking, biomarkers

Heavy metals Spatial trends Persistent organic pollutants (POPs) Diet Temporal trends Human health
91. Contaminants in Greenland Human Diet

Humans in Greenland are exposed to higher intakes of some contaminants from the diet than in most of Europe and North America. The objective of the study is to screen the most important local diet items in West Greenland for cadmium, mercury, selenium and organochlorine contaminants. Mammals, birds, fish and invertebrates, mainly marine species are being analysed.

Organochlorines PCBs Heavy metals Fish Caribou Terrestrial mammals Exposure Persistent organic pollutants (POPs) Seabirds Reindeer Pesticides Diet Human health Human intake Marine mammals
92. Lead Contamination of Greenland Birds

In Greenland lead exposure to humans from the local diet in general is very low. But the use of lead shot introduces a significant amount of lead in locally hunted birds. Human exposure to lead from the use of lead shot will be assessed by analysing breast meat from thick-billed murre and common eider. In common eider, the Greenland species which is suspected to be most exposed to lead toxicity, the frequency of embedded shots and of shots in the gizzard will be studied, and wing bones will be analysed for lead as an indicator of long-term exposure to lead.

Biological effects Sources Heavy metals Indigenous people Exposure Local pollution Seabirds Diet Human health Human intake
93. Contaminants in arctic sea ducks

To examine concentrations and biological effects of selected trace elements in king and common eiders from various locations in the Canadian arctic.

Biological effects endocrine disruption Heavy metals immune function king eiders Arctic Seabirds common eiders sea ducks
94. Mercury Measurements at Amderma, Russia

This project aims to establish continuous Total Gaseous Mercury (TGM) measurements at Amderma, Russia to provide circumpolar data in concert with international sampling efforts at Alert (Nunavut, Canada), Point Barrow (Alaska, USA) and Ny-Ålesund (Svalbard/Spitsbergen, Norway). The objectives of this project are to determine spatial and temporal trends in atmospheric mercury concentrations and deposition processes of mercury in the Arctic in order to assist in the development of long-term strategies for this priority pollutant by: A) measuring ambient air TGM concentrations in the Russian Arctic; B) investigating and establishing the causes of temporal variability (seasonal, annual) in mercury concentrations so that realistic representations (models) of atmospheric pathways and processes can be formulated, tested and validated; and C) studying the circumpolar behaviour of mercury by comparison with data from other polar sites.

Pathways Atmospheric processes gas-phase mercury mercury Heavy metals Long-range transport Spatial trends Hg Arctic Atmosphere Temporal trends particulate-phase mercury Arctic springtime depletion of mercury total gaseous mercury
95. Mercury Measurements at Alert

The objectives of the project are: A) to determine temporal trends in atmospheric mercury concentrations and deposition processes of mercury in the Arctic, and to assist in the development of long-term strategies for this priority pollutant by: i) measuring ambient air Total Gaseous Mercury (TGM) concentrations in the Canadian Arctic (Alert) and investigating the linkage to elevated levels of mercury known to be present in the Arctic food chain; ii) investigating and establishing the causes of temporal variability (seasonal, annual) in mercury concentrations so that realistic representations (models) of atmospheric pathways and processes can be formulated, tested and validated; iii) studying the chemical and physical aspects of atmospheric mercury vapour transformation (oxidation) after polar sunrise and the resultant enhanced mercury deposition to the sea, snow and ice surfaces each year during springtime; and iv) obtaining a long-term time series of atmospheric mercury (TGM) concentrations at Alert for the purpose of establishing whether mercury in the troposphere of the northern hemisphere is (still) increasing and if so, at what rate; B) to establish a sound scientific basis for addressing existing gaps of knowledge of the behaviour of mercury in the Arctic environment that will enable international regulatory actions to reflect the appropriate environmental protection strategies and pollution controls for the Arctic by: i) studying the relative roles of anthropogenic and natural sources of mercury so as to clarify understanding of the atmospheric pathways leading to the availability of mercury to Arctic biota; ii) studying tropospheric TGM depletion mechanisms/processes leading to enhanced input of mercury to the Arctic biosphere in spring; iii) undertaking essential speciated measurements of particulate-phase and/or reactive gaseous-phase mercury as well as mercury in precipitation (snow/rain) to quantify wet and dry deposition fluxes into the Arctic environment; and vi) providing the scientific basis for the information and advice used in the preparation and development of Canadian international strategies and negotiating positions for appropriate international control objectives.

Pathways Atmospheric processes gas-phase mercury mercury Heavy metals Long-range transport Spatial trends Hg Arctic Atmosphere Temporal trends particulate-phase mercury Arctic springtime depletion of mercury total gaseous mercury
96. Fluxes of Mercury from the Arctic Ice Surface during Polar Sunrise Conditions and Melt Conditions

The objectives of this project are: A) to determine the pathway for the transfer of mercury in snowmelt to sea water during the melt period at Alert; B) to determine the extent of open water and wet ice in the summer Arctic as it affects the surface exchange of Hg using satellite radar imagery; and C) to determine the atmospheric dynamics associated with the photochemistry of mercury episodically during the polar sunrise period.

trace metals satellite radar imagery radar Atmospheric processes melt open water acoustic sounding mercury Mapping Heavy metals Long-range transport Spatial trends Contaminant transport Hg Modelling Ice Arctic GIS radar imagery wet ice Atmosphere atmospheric boundary layer boundary layer
97. Spatial trends in loadings and historical inputs of mercury inferred from Arctic lake sediment cores

1. To determine the depth profiles of mercury (Hg) and lead (Pb) as well as manganese (Mn) and iron (Fe) in fifteen dated Arctic sediment cores over a three year period. Mercury is the main focus. 2. To quantify geographical trends in fluxes of the mercury and its enrichment factors in Nunavut, NWT, Nunavik, and Labrador. To link mercury findings with those of paleolimnological indicators, POPs, as well as indicators of biogeochemical processes of manganese and iron, all of which are obtained from the same cores, or cores from the same sites whenever possible. 3. To complement existing data on mercury in Arctic sediment cores with data generated over a much wider latitudinal and longitudinal range than previous work in order to provide a better understanding of Hg in Canada North. 4. Secondary to Hg, to provide loading data for Pb which may help elucidate the understanding of Hg pathways and sources.

Pathways Sources Metals pollution Canadian Arctic Mercury Heavy metals Spatial trends Arctic Sediments Remote lakes
98. AMAP Human Health Data Centre

The objectives of the centre are: - to provide access to data from recent human health monitoring and research activities conducted as part of the AMAP national implementation plans. - to provide a means to ensure treatment of data in a consistent manner, uniform statistical analysis etc., including application of objective quality assurance procedures. - to begin the process of establishing a long-term archive of relevant Arctic monitoring data for use in future assessments of temporal trends etc. - to meet the ministerial request from the Alta Conference to include human health data in the AMAP thematic data centres.

Populations Heavy metals Indigenous people Arctic Persistent organic pollutants (POPs) Data management Temporal trends Human health Human intake
99. AMAP phase II- Faroe Islands, 2000, core program

The project is meant to cover specific parts of AMAP phase II in the Faroe Islands. The project includes species from the marine and freshwater environment as well as biota from the terrestrial subprogram. The species chosen for the project are to be analysed for the environmental toxins that were termed essential in the guidelines of the circumpolar programme, but minor adjustments may occur. The selection of species to be analysed have been made so as so to elucidate the burden of contaminants in the local and often also traditional food, and at the same time it has been important to ensure comparability between countries in the AMAP area. The biota chosen are pilot whale, black guillemot, hare, sheep and lamb, arctic char and sculpin. In addition to this core program where the above-mentioned are analysed for the limited set of pollutants, certain special tasks have been planned. Examples on such special tasks are the analysis of mercury in sediment core profiles and investigation of the dioxin and POP burden in cows milk.

PCBs Heavy metals Fish Terrestrial mammals Persistent organic pollutants (POPs) Seabirds Pesticides Temporal trends Marine mammals