Greenland Sea: projects/activities

To edit or add records to any of the catalogs, log in or create an account.

Directory entires that have specified Greenland Sea as one of the geographic regions for the project/activity and are included in the AMAP, ENVINET, SAON and SEARCH directories. Note that the list of regions is not hierarchical, and there is no relation between regions (e.g. a record tagged with Nunavut may not be tagged with Canada). To see the full list of regions, see the regions list. To browse the catalog based on the originating country (leady party), see the list of countries.

It is also possible to browse and query the full list of projects.

Displaying: 1 - 13 of 13
1. Ice ridging information for decision making in shipping operations

IRIS brings together several EU partners to investigate methods to estimate sea ice ridging severity from satellite imagery and assess the impact of these ridges on icebreaker transit times, particularly in the Baltic Sea. The consortium is largely Finnish and is co-ordinated by the Helsinki Technical University. SAMS’ role is to study statistical properties of synthetic aperture radar (SAR) images and relate these to ridge parameters.

Shipping Ice Ice sheets Arctic
2. Greenland Arctic Shelf Ice and Climate Experiment

-Quantify changes in ice dynamics and characteristics resulting from the switch in AO phase -Establish a climate record for the region north of Greenland through the retrieval and analysis of sediment cores -Improve an existing dynamic-thermodynamic sea ice model, focusing on the heavily deformed ice common in the region -Relate the region-specific changes which have occurred to the larger-scale Arctic variablity pattern -Place the recent ice and climate variability for this critical region into the context of long term climate record, as reconstructed from sediment cores

Climate variability Climate Sea ice Environmental management Climate change Modelling Ice Arctic Ice cores Temporal trends
3. Sea Ice Thickness Observation System

SITHOS (Sea Ice Thickness Observation System) is also a three-year EU Framework 5 project. The Nansen Environmental Remote Sensing Centre (NERSC) will co-ordinate six institutions in the development of an integrated system for measuring sea ice thickness in the Arctic Ocean. Several approaches for obtaining ice thickness will be used, including novel flexural-wave methods, remote sensing and electromagnetic induction techniques. SAMS’ role is to provide data from UK submarines and aid in the development of the novel tiltmeter-based instruments. Data will be used to improve sea ice models and validate the new CRYOSAT satellite sensors. The resulting synoptic thickness monitoring network will be used to investigate the postulated dramatic thinning in the Arctic Ocean sea ice cover as a result of climate change.

Shipping Ice Ice sheets Arctic
4. RADNOR - Radioactive dose assessment improvements for the Nordic marine environment: Transport and environmental impact of technetium 99 (99Tc) in marine ecosystems

Radioactivity in the Arctic environment is a central topic within environmental pollution issues. Increased discharges of technetium-99 (99Tc) from the nuclear fuel reprocessing plant Sellafield to the Irish Sea has caused public concerns in Norway. This project (acronym “RADNOR”) includes model and monitoring assessments and improvements, assessment of current and novel abiotic and biotic dose parameters and dose calculations and use of realistic climatic background scenarios in order to assess corresponding consequences for transport of radioactive pollutants. RADNOR consists of three main components: part 1, the determination of levels and time series of 99Tc in benthic and pelagic food webs; part 2, containing working packages on improvements to the understanding of site-specific and time-dependent sediment-water interactions (KD), kinetics of accumulation (CF) and body distribution in marine organisms, including contaminated products for the alginate industry and part 3, dealing with model hindcasts and observations for spreading of 99Tc from the Sellafield nuclear reprocessing plant during the 1990s and improvement of the NRPA dose assessment box model. From the model outputs, doses to man and environment will be calculated resulting in a valuable database for use within environmental management and for decision makers.

distribution coefficients (KD) RADNOR Long-range transport Spatial trends Contaminant transport concentration factors (CF) Radionuclides Modelling Oceanography Arctic Food webs Sediments Temporal trends Human intake Technetium 99
5. Arctic Social Science Data Center (ASDC)

A proposal has been submitted to the National Science Foundation titled: For Support of the Arctic Social Science Data Center at NSIDC, OPP-0119836.

Arctic social science Arctic Data management
6. A study of palynodebris and dinoflagellate cysts in Holocene sediments from Greenland and Faeroe Islands fjords and North Atlantic deep-water sites

The project aims at studying the lateral and vertical (stratigraphic) variations in the composition of particulate organic debris (palynodebris sensu Boulter and Riddick, 1986) from a suite of Holocene sediment cores from off W, S, and SE Greenland, via the Reykjanes Ridge south of Iceland, to the Faeroe Islands. The main objective is to elucidate changes in paleoenvironmental and - hydrographic parameters such as temperature, trophic level, salinity, and energy in the water mass. In particular, the study aims at mapping the distribution of different species of organic walled dinoflagellate cysts in relation to these parameters.

Geology Hydrography Dinoflagellate cysts Climate change Biodiversity Arctic Holocene Palynology Sediments Ocean currents Temporal trends
7. Persistent organic pollutants in marine organisms in the marginal ice zone near Svalbard: Bioconcentration and biomagnification

Due to the high organochlorine concentrations reported in Arctic top predators, and the potential transport of contaminants with the drifting sea-ice in the Arctic, organisms constituting lower trophic levels living in association with sea-ice have been proposed as susceptible of uptake of high loads of organic pollutants. The present project studies the organochlorine occurrence in organisms living in the marginal ice zone north of Svalbard and in the Fram Strait. This includes both ice fauna (ice-amphipods), zooplankton, polar cod and different seabird species foraging in the marginal ice zone. Our objectives are to investigate: *The bioaccumulation of organochlorines in ice-associated amphipods in relation to diet preference, spatial variation due to sea ice drift route, size, sampling year, uptake and distribution within the body. *Comparison of organochlorine contamination in pelagic and ice-associated organisms at the similar trophic position, to investigate the effect of sea ice as a transporter and concentrator of pollutants. *Spatial variation in zooplankton species, related to differences in water masses and exposure to first year or multi year sea ice. *The contamination load in different seabirds feeding in the marginal ice zone, in relation to diet choice and estimated trophic position, taxonomically closeness and the induction of hepatic CYP P450 enzymes.

habitats Biology sea ice drift route Organochlorines PCBs Fish Long-range transport Spatial trends Sea ice Contaminant transport Ice trophic positions Arctic Persistent organic pollutants (POPs) Seabirds Food webs metabolism Pesticides ice-associated organisms Diet zooplankton
8. Polar Exchange at the Sea Surface (POLES)

Our broad area of enquiry is the role of polar regions in the global energy and water cycles, and the atmospheric, oceanic and sea ice processes that determine that role. The primary importance of our investigation is to show how these polar processes relate to global climate.

Atmospheric processes polar cloud dynamics ice dynamics surface radiation and cloud forcing Climate variability Climate Sea ice Climate change surface heat and mass balance polar atmospheric processes ice-ocean models arctic climate Modelling Ice Oceanography Arctic SEARCH Atmosphere Ocean currents cryosphere ice thickness
9. The Role of Polar Oceans in Contemporary Climate Change

Our central geophysical objective is to determine how sea ice and the polar oceans respond to and influence the large-scale circulation of the atmosphere. Our primary technical objective is to determine how best to incorporate satellite measurements in an ice/ocean model.

Atmospheric processes ice dynamics mass balance of Arctic sea ice Geophysics Climate variability Climate Sea ice Climate change freshwater balance of the Arctic Ocean polar atmospheric processes ice-ocean models arctic climate Modelling Ice Oceanography Arctic SEARCH Atmosphere Ocean currents ice thickness
10. Polar Ice Prediction System Version 3.0 (PIPS 3)

To develop the next-generation Navy operational ice thickness and movement model.

Shelf seas Hydrography Modelling Ice Oceanography Arctic SEARCH Data management Atmosphere Ocean currents
11. The high latitude oceans in the climate system, with special emphasis on their role in the global carbon cycle

The scientific objectives of this project is to add information that helps elucidate the role of the Arctic Mediterranean Seas (Arctic Ocean and Nordic Seas) in the climatic system of the Northern Europe. More specifically it has the following aims: - To assess the heat and carbon dioxide fluxes over the air-sea interface in the Barents Sea and elucidate the effect this has on the formation of Arctic Ocean intermediate waters and associated carbon fluxes. - To assess the temporal variability of the fresh water distribution in the Arctic Ocean, both river runoff and sea ice melt, and the affect this has on the outflow of fresh water to the regions of open ocean deep water formation (the Greenland, Iceland and Labrador Seas). - To assess the mixing of upper and intermediate waters along the East Greenland Current that gives the properties of the overflow into the North Atlantic Ocean and thus add to the driving of the thermohaline circulation. This also contributes to the sequestering of anthropogenic carbon dioxide.

Shelf seas Hydrography Climate change Oceanography Arctic Geochemistry
12. Quality Assurance of AMAP data

The aim of this project is to conduct quality assurance on the data of organic contaminants obtained in the Greenland / Faroe Islands / Denmark part of the AMAP projects.

Organochlorines PCBs Fish Arctic Persistent organic pollutants (POPs) Seabirds Data management Marine mammals
13. Monitoring and Modelling of Atmospheric Pollution in Greenland

In 2000 it is proposed to operate an atmospheric programme consisting of a monitoring and a modelling part and composed of 3 programme modules. The monitoring programme consists of two parts. I. It is proposed to continue the weekly measurements of acidifying components and heavy metals at Station Nord in north-east Greenland for assessment of atmospheric levels and trends. The measuring programme includes also highly time resolved measurements of Ozone and of total gaseous Mercury (TGM). The results will also be used for continued development and verification of the transport model calculations. Receptor modelling of the pollution composition will be used for identification and quantification of the source types that influence the atmospheric pollution in north-east Greenland. Comparison of the two sets of modelling results is expected to give better models. II. The purpose of the project is the operation of a permanent air monitoring programme in the populated West Greenland at a location which is representative for transboundary air pollution. The most promising sites are located in the Disko Bay area and in the vicinity of Nuuk. The objectives are to obtain data on the concentration levels of air pollutants that can be used for assessing seasonal variations and trends and for studying long range transport of pollutants mainly from North America to West Greenland. The purpose is further to provide data for development and improvement of long range transport models that can be used to identify the origin of the pollution and its transport pathways. The results from measurements and model calculations will be used to assess the magnitude of deposition to sea and land in this populated region of Greenland. III. In the proposed modelling programme the operation, application and maintenance of the current basic hemispheric model will be continued. Results on origin, transport, and deposition of contaminants on land and sea surfaces in the Arctic are essential for interpretation and understanding the Arctic air pollution. The model will be developed to improve the spatial and temporal resolutions, as well as the accuracy by including physically and mathematically better descriptions of the key processes treated in the model. The work to expand the model to include also non-volatile heavy metals, such as Cadmium and Lead on an hemispheric scale will be continued. Since the atmospheric chemistry of Ozone and Mercury seem to be strongly connected in the Arctic it is planned to continue the development and testing of a model module for hemispheric transport and chemistry for ozone and mercury to assess the origin and fate of this highly toxic metal in the Arctic.

Atmospheric processes Atmospheric Pathways Ozone Arctic haze Long-range transport Acidification Pollution sources Modelling Emissions Arctic Atmospheric Deposition Atmosphere