To edit or add records to any of the catalogs, log in or create an account.
Directory entires that have specified Greenland as one of the geographic regions for the project/activity and are included in the AMAP, ENVINET, SAON and SEARCH directories. Note that the list of regions is not hierarchical, and there is no relation between regions (e.g. a record tagged with Nunavut may not be tagged with Canada). To see the full list of regions, see the regions list. To browse the catalog based on the originating country (leady party), see the list of countries.
It is also possible to browse and query the full list of projects.
The aim of the present project is to continue the monitoring of contaminants Greenland biota in order to detect temporal and geographical changes including screening and retrospective analyses of "new" contaminants of increasing concern. Furthermore, temporal trend monitoring of selected biomarkers (e.g. bone mineral density and histopathological changes) in polar bear are included in the monitoring as these have shown to be sensitive to stressors such as contaminants. The project will provide the fundamental basic knowledge of temporal trends and feed into international geographical trend studies of mainly long range transport of contaminants in the atmosphere and biota to Greenland. The project will provide an important input to international convention works such as the Stockholm Convention and the Long-range Trans-boundary Air Pollution.
In the Arctic the warming climate is expected to increase the meltning of glaciers, reducing the permafrost and increase the biologial activities. This may have consequences for the transportations of Hg from the terrestrcal ecosystems to the marine coastal areas. The project will investigate the influence of warming climate on the transportation of Hg to marine cooastal areas.
Det danske bidrag til Arctic Monitoring and Assessment Programme (AMAP) under Arktisk Råd har dokumenteret at østgrønlandske isbjørne er mest forurenede mht. fedtopløselige organiske miljøgifte. Siden 1999 har Danmarks Miljøundersøgelsers Afdeling for Arktisk Miljø (DMU-AM) undersøgt isbjørnesundheden i Østgrønland via et unikt samarbejde med lokale bjørnefangere, og et tværfagligt samarbejde med biologisk, veterinær og human medicinske fagområder i Grønland og Danmark samt internationale samarbejdsrelationer med Canada, Norge og Tyskland. Undersøgelserne er mundet ud i en lang række af række internationale videnskabelige publikationer som dokumenterer tidstrend i miljøbelastningen af de grønlandske og norske isbjørne og sammenhængen mellem forurening og helbredseffekter på isbjørne. Disse har fået omtalt presseomtale verden over.
The project aims at establishing a long-term Arctic-Antarctic network of monitoring stations for atmospheric monitoring of anthropogenic pollution. Based upon the long and excellent experiences with different scientific groups performing air monitoring within the Arctic Monitoring and Assessment Programme (AMAP), an expanded network will be established including all AMAP stations and all major Antarctic “year-around” research stations. As an integrated project within the “International Polar Year 2007-08” initiative, the ATMOPOL co-operation intend to • Establish a long-term coordinated international Arctic-Antarctic contaminant programme. • Develop and implement a joint sampling and monitoring strategy as an official guideline for all participating stations. • Support bi-polar international atmospheric research with high-quality data on atmospheric long-range transport of contaminants (sources, pathways and fate). • Support future risk assessment of contaminants for Polar Regions based on effects of relevant contamination levels and polar organisms Based upon the well-established experiences of circum-Arctic atmospheric contaminant monitoring in the Arctic under the AMAP umbrella, a bi-polar atmospheric contaminant network will be established and maintained. In conjunction with the polar network of atmospheric monitoring stations for air pollution, surface-based and satellite instrumentation will be utilised to provide the characterization of the Arctic atmospheric-water-ice cycle. Together with numerical weather prediction and chemical transport model calculations, simultaneous measurements of pollutants at various locations in the Arctic and Antarctic will enhance our understanding of chemical transport and distribution as well as their long-term atmospheric trends. In addition to investigating the importance of atmospheric transport of pollutants an understanding of the transference and impact of these pollutants on both terrestrial and marine environments will be sought. A secretariat and a “scientific project board” will be established. During this initial phase of the project (2006), a guideline on priority target compounds, sampling strategies, equipment and instrumentation, analytical requirements, as well as quality assurance protocols (including laboratory intercalibration exercises) will be developed and implemented. The ATMOPOL initiative aims to address highly relevant environmental change processes and, thus, will strive to answering the following scientific questions: • How does climate change influence the atmospheric long-range transport of pollutants? • Are environmental scientists able to fill the gaps in international pollution inventories and identification of possible sources for atmospheric pollution in Polar Regions? • What are the differences in transport pathways and distribution patterns of various atmospheric pollutants between Arctic and Antarctic environments? Why are there such differences? What is the final fate of atmospherically transported pollutants and how does this impact on the environment and indigenous people?In order to understand the underlying atmospheric chemistry of pollution, e.g. atmospheric mercury deposition events, routine surface measurements of UV radiation as well as campaign related measurements of UV radiation profiles will also be included.The project will establish a cooperative network on atmospheric contaminant monitoring in Polar Regions far beyond the IPY 2007/08 period and is, thus, planned as an “open-end” programme. All produced data will be available for all participating institutions for scientific purposes as basis for joint publications and reports from the ATMOPOL database to be developed.
In Greenland lead contamination of the edible parts of seabirds, particularly eiders, is high because the birds have been killed with lead shot. Therefore bird-eaters are exposed to a high lead intake, probably often exceeding safe limits. In this study we will compare the lead level in human blood in a group of people from Nuuk, Greenland eating many birds with the level in a group eating few. This will enable us to assess if the high lead exposure is reflected in people and constitutes a health risk. The project is conducted in cooperation with The Medical Clinic in Nuuk and The Center for Arctic Environmental Medicine, Aarhus University.
Peat samples from Greenland already collected and dated will be analysed for mercury in order to assess term time trends of mercury deposition during this century.
In Greenland the human intake of mercury and cadmium from local diet is high. In an autopsy study, mercury and cadmium concentrations in humans has been analyzed. This study will make it possible to assess to what extent the high intake of mercury and cadmium is reflected in human tissue.
Polar bears are at the top of the arctic marine food chain. Owing to the high lipid content of their diet, polar bears appear particularly prone to bioaccumulate organochlorines. Polar bears from East Greenland and Svalbard have higher contaminant levels than polar bears elsewhere in the Arctic. Levels of PCBs in these areas might negatively affect reproduction and survival. So far more than 130 polar bear samples have been collected since 1999. These samples are being analysed for organochlorines and pathological effects.
The project includes analyses of PCBs, organochlorine pesticides, chlordanes and brominated flame retardants in seals, birds and fish from Greenland. The programme covers a period of five years to investigate temporal trends in the concentration levels of organic pollutants in Greenland.
The present study will establish a link between the mercury levels in the abiotic environment (e.g. historical records of mercury data in peat bogs, the ice sheet or marine sediments) with levels in carnivore species (polar bear, birds of prey). These results can be used in a model for predicting past and future development of the mercury loads in high trophic biota. This in turn will enable us to evaluate if changes in mercury levels in the atmosphere are reflected in species at higher trophic levels of the Arctic ecosystem. The project will expand the longevity and certainty of the biotic time series of mercury to about 150 years by analyzing museum samples of bird feathers and polar bear hair and teeth. The project is part of the project “Fate of mercury in the Arctic (FOMA)”.
The aim of the project is to describe and model mercury accumulation up the Arctic food chain. Based on existing knowledge from old projects and new measurements made on frozen tissue samples. This project will contribute to a better understanding of the fate of mercury in the Arctic.
The project studies the development through time of contaminants (heavy metals and organic pollutants) in animals in Greenland.
The general objective is to assess time trends and deposition loads of mercury and persistent organic pollutants from long-range atmospheric transport in Arctic environments (Greenland and north Swedish mountains) using lake sediments. The specific aims are: 1. Mercury - Study pre-industrial and industrial temporal changes in Hg concentrations in sediment records of remote lakes in Greenland and north Swedish mountains. - Address the hypothesis of 'cold condensation' (the progressive re-volatilization in relatively warm locations and subsequent condensation and deposition in cooler environments) of mercury, using a series of lake sediment cores along climate gradients: in Greenland from the inland ice sheet towards the coast and in the Swedish mountains from high altitudes down to the boreal forest. 2. POPs - Make a screening to establish which persistent organic pollutants are present in recent lake sediments in remote sites in Greenland and the north Swedish mountains. Besides PCBs, HCH, DDT and other pesticides, there are new environmental threats such as brominated flame retardants, such as PDBEs, which are of particular interest. The increasing use of PBDE and other brominated compounds may lead to increasing concentrations in the Arctic environment. However, very little is known about the levels of PBDEs as well as other POPs in sediments from the Arctic. - Analyse test series of selected POPs using a lake sediment core to assess temporal trends and a number of surface sediment samples from different lakes to assess spatial variability in concentrations and cumulative fluxes of POPs in Greenland and Swedish mountain lakes. - The main purpose of this pilot study of POPs is to determine the concentrations of selected POPs in sediments from Greenland and the northern Swedish mountains and to assess how useful lake sediments are for studying temporal and spatial pollution loads of POPs in Arctic environments.
The major aim in AMAP is to monitor the levels of anthropogenic contaminants in all major compartments of the Arctic environment, and assess the environmental conditions in the area. This core programme will provide the Danish/Greenlandic authorities with data which make it possible to take part in the international AMAP programme under the Arctic Council. In order to monitor the levels of anthropogenic pollutants, samples will be collected and analysed. The measured components will include heavy metals and persistent organic pollutants in order to allow for spatial and temporal trends in Arctic biota. The program has taken in consideration the recommended importance of persistent organic pollutants and mercury and the importance of the marine food chain. The core program focuses on areas with high population density or areas with high levels of pollutants in the environment.
Analysis of POP and heavy metals, in men and women (pregnant and non-pregnant), time and spatial trends, lifestyle factors, diet and smoking, biomarkers
Humans in Greenland are exposed to higher intakes of some contaminants from the diet than in most of Europe and North America. The objective of the study is to screen the most important local diet items in West Greenland for cadmium, mercury, selenium and organochlorine contaminants. Mammals, birds, fish and invertebrates, mainly marine species are being analysed.
In Greenland lead exposure to humans from the local diet in general is very low. But the use of lead shot introduces a significant amount of lead in locally hunted birds. Human exposure to lead from the use of lead shot will be assessed by analysing breast meat from thick-billed murre and common eider. In common eider, the Greenland species which is suspected to be most exposed to lead toxicity, the frequency of embedded shots and of shots in the gizzard will be studied, and wing bones will be analysed for lead as an indicator of long-term exposure to lead.